
Growth and Differences of Log-Normals

Robert Parham∗

Abstract

Growth rates and net flows in economics are empirically heavy-tailed across settings
as diverse as firms, cities, regional output, epidemics, and wages. This paper provides
a simple unifying explanation and a single theoretically motivated distributional form
that fits and organizes these disparate phenomena. The key observation is that many
economic variables of interest are net outcomes shaped by two opposing multiplicative
forces: sales and expenses, creation and destruction, inflows and outflows. When each
side is itself the product of many small shocks, the multiplicative CLT implies each
component is approximately log-Normal, while their net outcome follows a Difference-
of-Log-Normals (DLN) distribution.

I develop a CLT-based taxonomy of limiting distributions for economic data, and
show how DLN variables admit a natural hyperbolic representation that decomposes
outcomes into two interpretable separable components: productive magnitude and pro-
ductive efficacy. I then test the distributional predictions in a large panel of U.S. public
firms (1970–2019). Firm magnitudes are well described by Skew-Normals, with Normal
upper tails. In contrast, firm cashflows, payouts, investment, key ratios, growth rates,
and stock returns at multiple frequencies exhibit remarkable fit to the DLN. Finally,
I embed these findings in a tractable firm model via a difference-of-log-linears profit
production function, which makes the (magnitude,efficacy) state space operational for
estimation and counterfactuals.
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1 Introduction

What is the statistical distribution of growth? This can sound like a technical distraction

until one notices how often economic questions hinge on the margins of the distribution.

Selection and exit are tail events. Rare booms and collapses move aggregates in granular

economies. Asset pricing and risk management live in the tails by construction. Growth is

the law of motion that maps shocks into selection, reallocation, and aggregates.

The empirical fact motivating this paper is familiar: growth rates and net flows are heavy-

tailed. Firm cashflows, investment, and payout flows exhibit frequent large deviations. City

and regional output growth has occasional very large moves. Epidemic growth does too.

These tails are not a curiosity. They are a central feature of the data-generating process.

Figure 1 provides the paper’s punchline up front. Across settings as diverse as firm

growth, regional GDP growth, COVID growth, and wage growth, the same distributional

form fits strikingly well: the Difference-of-Log-Normals (DLN). The goal of the paper is to

explain why this distribution arises from first principles, to show that it organizes a wide

range of economic objects, and to provide a tractable modeling and measurement framework

that makes it operational.

The paper’s starting point is deliberately mundane. Many variables we care about are

net outcomes : profit is sales minus expenses; net investment is gross investment minus disin-

vestment; growth is often “creation minus destruction” in disguise. Combine that accounting

fact with a second observation emphasized early by Gibrat (1931) and Roy (1951): propor-

tional growth is multiplicative. When a quantity grows by x%, it is multiplied by (1+x), and

many periods of such shocks push levels toward log-Normality by the multiplicative CLT. If

both sides of a net object — benefits and costs — are themselves the product of many small

multiplicative forces, then each side is approximately log-Normal, but the object of interest

is their difference. That yields a sharp prediction: net outcomes, their induced intensities,

and the growth rates built from them should be distributed as a Difference-of-Log-Normals.
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Fig. 1. Growth Distributions. This figure presents histograms of the growth rates of the phenomena listed (grey bars with red
boundaries) along with a fitted Difference-of-Log-Normals distribution (blue solid line). Also presented are quantile-quantile
plots comparing the empirical and theoretical distributions for each fit. Panels: (a),(b) are firm sales and capital growth (1970-
2019, Compustat data); (c),(d) are GDP growth by county, and GDP growth by metropolitan area and industry (2017-2020
and 2001-2017, respectively, U.S. Bureau for Economic Analysis data); (m),(n) are daily COVID case and tests growth (3/2020-
1/2022, Our World In Data data); (o) is daily temperature growth (1995-2020, Weather Project at the University of Dayton
data); (p) is U.S. wage growth (2015-2020, Global Repository of Income Dynamics data). Panels (e)-(l) are the respective q-q
plots. Odd panels present the data in log-points and linear x-axes, and even panels present the data in log-basepoints (1/1000
of a log-point) and asinh-scaled x-axes. See Section 3.3 for a discussion of the two canonical forms of the DLN.
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This perspective complements, and in some places reframes, a large literature on size,

growth, and tails. Work on firm and city size has often emphasized Pareto and related

power laws (e.g. Axtell, 2001; Gabaix, 2009), while dynamic models of firm growth and

reallocation have delivered rich implications under approximately Gaussian growth (e.g.

Klette and Kortum, 2004; Luttmer, 2007). More recent empirical work, including Arata

(2019), has documented robust non-Normality in growth and returns. The contribution

here is not another flexible heavy-tailed family, but a specific and economically interpretable

distributional object implied by two banal facts: net accounting identities and multiplicative

growth. In particular, the paper treats heavy tails as a structural implication of opposing

multiplicative forces, rather than as evidence of “special” rare events.

A quick operational-leverage example makes the arithmetic hard to unsee. Suppose a

firm has $100 in sales and $90 in expenses, so income is $10. If both sales and expenses rise

by 10%, income rises by 10%: $110–$99=$11. But if sales rise by 10% while expenses fall by

10%, income becomes $110–$81=$29: a 190% increase. Modest multiplicative movements

in two positive components can generate very large movements in their difference. The

distributional object implied by this arithmetic is not Normal, and it is not log-Normal

either — it is a difference of two log-Normals.

Section 2 formally develops the statistical logic. I present a CLT-based taxonomy of

limiting distributions that repeatedly arise in economic contexts: additive aggregation yields

the Normal; mild constraints and selection yield Skew-Normal limits; multiplicative aggrega-

tion yields the log-Normal; its constrained analog yields the Log-Skew-Normal; and opposing

multiplicative forces yield the Difference-of-Log-Normals (DLN). The DLN has a useful

and underappreciated structure. The identity

X − Y = exp(x)− exp(y) = 2 exp

(
x+ y

2

)
sinh

(
x− y

2

)

is the hyperbolic analogue of moving from Cartesian to polar coordinates. It suggests a
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natural reparametrization into two distinct objects,

λ =
x+ y

2
= log

√
XY , τ =

x− y

2
= log

√
X/Y ,

which I interpret as productive magnitude λ and productive efficacy τ . Economically, λ

captures scale of operations while τ captures the surplus wedge. The same identity provides

a first-principles motivation for the asinh(·) transform: DLN objects are “generated” by the

hyperbolic sine sinh(·), and its inverse asinh(·) is the natural map back to a log-like scale

that remains well-defined at zero and for negative values. This is not an ad-hoc econometric

trick; it is the native transformation of the object.

Section 3 takes the prediction to the data. The empirical focus is U.S. public firms

over 1970–2019 (Compustat/CRSP, with higher-frequency CRSP for returns), where the

accounting structure is clean and the measurement is rich. The core finding is that the DLN

is not merely “a heavy-tailed candidate”: it is the distributional form that repeatedly fits

the objects economists actually use. Firm cashflows, payouts, and investment are well fit by

DLN, as are economically central intensities such as margins, yields, and investment rates.

Growth rates and returns then follow naturally: once net flows and the intensities built

from them have DLN structure, the corresponding growth and return objects inherit this

structure across horizons. In parallel, the paper documents that firm magnitudes (log sizes)

are well described by Skew-Normals, with approximately Normal behavior in the upper tail

— a fact that is useful mainly because it clarifies what power-law claims imply in logs and

where they fail.

Why should an economist care about getting the distribution right? Because distribu-

tional misspecification is not innocuous. As emphasized by Jaimovich, Terry, and Vincent

(2023), the law of motion for growth is a first-order object: it governs selection and exit,

reallocation, and the sensitivity of real decisions to wedges. A Normal approximation puts

probability in the middle and muffles the margins; a DLN puts most mass on small moves
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with occasional very large moves while retaining finite moments. That shifts value toward

exit margins and raises the elasticity of survival, hiring, and investment to small wedges. In

models of industry dynamics, this changes inaction regions, trigger policies, and the implied

response of entry and exit to taxes and subsidies. In urban and regional contexts, it changes

how often large local shocks occur and how much aggregates load on local tail events. In

public finance, it affects the mapping from micro tails to aggregate tax bases and the ex-

pected incidence of extreme outcomes. The point is not that tails are dramatic; it is that

they are structural, and structural tails move structural objects.

This paper also squarely rejects the “black swan” agenda as an organizing principle for

the data. Heavy tails do not imply ill-defined risk. The DLN generates high kurtosis and

frequent large moves, but it retains finite moments of all orders. In the contexts studied here

— including equity returns across horizons — the evidence supports heavy-tailed, finite-

moment laws rather than infinite-variance rhetoric. The right lesson from the data is not

that variance is meaningless; it is that the Normal is a poor approximation.

Section 4 embeds the distributional facts in a tractable economic framework and clarifies

what kind of modeling is required. I propose a difference-of-log-linears profit production

function: both demand (revenue) and cost are log-linear in quantity and state variables

with Normal shocks, so each side is log-Normal in the limit and profit is their difference.

The hyperbolic (λ, τ) representation becomes a natural state space for the firm. Besides

its interpretability, this representation is practically useful: it turns two highly correlated

processes (benefit and cost sides) into nearly uncorrelated magnitude and efficacy processes,

which simplifies simulation, estimation, and counterfactual analysis. In particular, it makes

explicit that matching the data is inherently a two-factor exercise. One-factor productiv-

ity models — from classic selection and industry-dynamics environments (e.g. Jovanovic,

1982; Hopenhayn, 1992) to more recent workhorse frameworks in the tradition of Klette and

Kortum (2004) and Luttmer (2007) — have many virtues, but they generally deliver ap-

proximately Gaussian growth and they mechanically conflate “big firms” with “good firms.”
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In the data, magnitude and efficacy are close to orthogonal: high-efficacy firms exist at all

scales, and large firms are generally not the highest-efficacy. In that sense, τ is the natural

empirical and theoretical object for “how good is the firm,” separable from size and therefore

directly usable in models of selection, reallocation, and firm policies. This distinction mat-

ters for how we interpret heterogeneity, how we design empirical tests, and what we mean

by “reallocation to more productive firms.”

The same structure also strengthens measurement. Net outcomes can be negative, and

standard growth measures break at zero. The DLN framework, together with its hyperbolic

representation, motivates growth measures that remain coherent to and from negative values.

A companion paper Parham (2023) develops the full dynamic model and estimation; here

the goal is to show how a standard economic environment can generate the DLN law of

motion and how the (λ, τ) state space makes it usable.

Two remarks about scope. First, while Section 3 concentrates on firms, Figure 1 illus-

trates that the same DLN logic appears far beyond firms — in regional output, pandemics,

wages, and temperatures — suggesting a broader “opposing multiplicative forces” principle

that may be empirically relevant across domains. Second, the paper intentionally takes a

distribution-first approach: it pins down the relevant limiting objects, shows that they or-

ganize the data, and builds the minimal toolkit needed to embed them in economic models,

estimation, and counterfactuals.

The rest of the paper is organized as follows. Section 2 presents the CLT-based taxonomy

and the DLN’s hyperbolic representation. Section 3 tests the resulting predictions in firm

data, covering magnitudes, flows and intensities, growth, and returns. Section 4 proposes a

general firm model with a difference-of-log-linears profit production function and discusses

estimation and measurement. Section 5 concludes.
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2 Distributions spanned by the CLT

2.1 The Normal — N

What is so “normal” about The Normal distribution? The Normal, first described by de

Moivre in 1733,1 emerges from the Central Limit Theorem (CLT), one of the most funda-

mental results in probability theory. The CLT shows that sums of many random variables

(RVs) will tend to distribute Normally, even if the variables themselves are not Normally

distributed. Put differently, it states that a phenomenon in nature which is an additive

combination of many latent random forces will tend to distribute Normally. Formally,

Y = lim
T→∞

T∑
t=1

εt ∼ N (1)

for εt ∼ Ω under mild regularity conditions on Ω, the distribution of the noise terms, de-

pending on the version of the CLT used.2

In economic context, this yields the well-known result that the ergodic distribution of a

stationary AR(1) process is approximately Normal. A canonical form of that process is

Yi,t = ρ · Yi,t−1 + εi,t

with |ρ| < 1 and εi,t i.i.d following some distribution Ω with finite variance and kurtosis.

The distribution of Yt (over all observations i) at time t >> 1 will then tend to be Normal,

and the approximation will be better as ρ → 0 or will be exact if Ω is itself the Normal

distribution.

Two important facts about the Normal are worth noting. First, it is closed under addi-

tion and subtraction. That is, if N1 and N2 are two (possibly correlated) Normal random

variables, then so are N1 + N2 and N1 − N2. Second, the Normal is the maximum entropy

distribution for a specified mean and variance. In less technical terms, it means that assum-

ing some data are Normally distributed is the simplest or least restrictive assumption in the

1And later popularized by Gauss, earning the name “Gaussian.”
2E.g., Ω must have finite variance and negligibility via Lindeberg’s condition for the Lindeberg–Feller

CLT to hold.

8



“Occam’s razor” sense.

2.2 The Skew-Normal — SN

By way of a slight detour, it is worth presenting a little-known generalization of the

Normal distribution, the Skew-Normal distribution, first described by Azzalini (1985). It

is a three-parameter distribution SN(µ, σ2, α) with α ∈ R a skewness parameter. The SN

collapses to the Normal distribution N(µ, σ2) when α = 0. It is right-skewed (positive

skewness) for positive values of α and left-skewed (negative skewness) for negative values.

The Probability Density Function (PDF) for a Skew-Normal with µ = 0, σ = 1 is given by

f(x) = 2 · ϕ(x) · Φ(α · x)

with ϕ and Φ the Probability Density Function (PDF) and Cumulative Distribution Function

(CDF) of the Normal, respectively.

The economic interest in the Skew-Normal stems from stochastic processes with frictions

that depend on the current level of the process. This is true for many, if not most, real-world

applications. Examples include processes subject to (size-dependent) selection, processes

with boundary behavior, and heteroscedastic processes.3 Consider for example the following

process
Yi,t = ρ · Yi,t−1 + εi,t ; εi,t ∼ N

(
0,

σ2

exp(Yi,t−1)

)
(2)

For which the variance of the error term εi,t (inversely) depends on the level of the process

Yi,t−1. A notable example of such a process is the growth of firms, for which Yeh (2023)

documents an inverse relation between firm (log) size and growth variance (larger firms have

lower growth variance). The distribution of (log) size will then tend to be Skew-Normal.

3See e.g. Anděl, Netuka, and Zvára (1984).
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2.3 The Log-Normal — LN

The Log-Normal distribution, first described by Galton in 1879, is the distribution that

arises when one exponentiates a Normal random variable (RV). I.e., if Y = exp(N1) where

N1 ∼ N(µ, σ2), then Y ∼ LN(µ, σ2). Conversely, if Y ∼ LN then log(Y ) ∼ N. The Log-

Normal was popularized by Gibrat (1931),4 who described its emergence when considering

positively constrained quantities that arise from multiplicative processes, such as wages,

company sales, and city populations. Gibrat used a simple argument, later known as the

multiplicative Central Limit Theorem, to show that a phenomenon in nature which is a

product of many latent random forces will tend to distribute Log-Normally. Formally,

Y = lim
T→∞

(
T∏
t=1

εt

)
∼ LN

for positive εt ∼ Ω with mild regularity conditions as discussed above. Clearly, when one

takes log of the multiplicative CLT, one backs out the additive CLT of (1).

Gibrat’s observation is of note because growth itself is a multiplicative process — this is

why we discuss it in percentage units.5 When some quantity (a firm, a city, a wage, a price)

grows by some percentage x%, then the new value is the old value multiplied by (1+x). An

early discussion of the implications and reasoning for assuming multiplicative impact in such

quantities is the seminal work of Roy (1950, 1951). Roy empirically shows the distribution

of employee earnings is approximately Log-Normal, and discusses why this must arise when

one assumes productivity changes are multiplicative.

The canonical AR(1) process in logs, often used as the driving productivity process in

Dynamic Stochastic General Equilibrium (DSGE) models, can be written as

yi,t = ρ · yi,t−1 + εi,t ; Yi,t = exp(yi,t) = Y ρ
i,t−1 · exp(εi,t)

with lower case y denoting log(Y ) as usual. The productivity process Yi,t will then tend

to distribute Log-Normally, because the log-process yi,t will tend to Normality, as discussed

4Earning it the name “Gibrat’s distribution” for some time.
5“Sales increased by 12%”; “I got a 5% raise”; “Prices increased by 3%”; “The population grew by 4%”.
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above.

While the Normal and Skew-Normal are bi-directional distributions (i.e., are supported

on all of R and take both positive and negative values), the Log-Normal is a uni-directional

(always positive) distribution. Bi-directional distributions have both right- and left-tails,

while uni-directional distributions only have a right-tail. To that end, I define a bi-directional

distribution to be “heavy-tailed” if its tails are heavier than those of the Normal (i.e., high

kurtosis) and a uni-directional distribution to be “heavy-tailed” if its tail is as heavy (or

heavier) as that of the Exponential distribution.

Two important facts about the Log-Normal, mirroring the facts discussed above for the

Normal, are worth noting. First, it is closed under multiplication and division. I.e., if L1

and L2 are two Log-Normal random variables, then so are L1 · L2 and L1/L2. Second, the

Log-Normal is the maximum entropy uni-directional distribution for a specified mean and

variance. In less technical terms, it means that assuming always-positive data are Log-

Normally distributed is the simplest or least-restrictive assumption. Such data are always

positive, span several orders of magnitude,6 and grow (or shrink) by percentage points —

i.e. multiplicatively.

The Log-Normal is easy to work with, empirically, because it merely means one should

consider not the size of phenomena (e.g., firm size, city population, etc.) but the magnitude

of phenomena (defined hereafter to prevent confusion as the natural log of size). The line

of reasoning leading to the emergence of the Log-Normal simply means one should expect

magnitudes to distribute Normally, or Skew-Normally if any magnitude-dependent frictions

exist, leading us to the next CLT-implied distribution.

2.4 The Log-Skew-Normal — LSN

A natural and useful extension of the Log-Normal is the Log-Skew-Normal. As the name

implies, the LSN is the uni-directional distribution that arises when one exponentiates a

6E.g., a $2 pen vs. a $20M jet; a factory producing 100 widgets vs. one producing 100M; a 10-person
town vs. a 10M-person metropolis.
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Skew-Normal random variable. I.e., if Y = exp(S1) where S1 ∼ SN(µ, σ2, α), then Y ∼

LSN(µ, σ2, α). Conversely, if Y ∼ LSN then log(Y ) ∼ SN.

The economic interest in the Log-Skew-Normal, as the discussion above suggests, is due to

it being the target distribution of phenomena sizes, when the underlying magnitude process

is additive with frictions. The process

Yi,t = exp(yi,t) ; yi,t = ρ · yi,t−1 + εi,t ; εi,t ∼ N(0,
σ2

Yi,t−1

)

which merely exponentiates the SN process in (2), is an example that gives rise to Yi,t ∼ LSN.

Testing whether a given data distribution is Log-Skew-Normal is as simple as taking

logs and then testing whether the resulting magnitudes distribute Skew-Normal, which is

a standard test in most common statistical packages. Parameter estimates given empirical

data distributing LSN are similarly standardized.

2.5 The Difference-of-Log-Normals — DLN

Finally, we reach the namesake distribution of this work, the Difference-of-Log-Normals

distribution. As the name again implies, the distribution arises when one exponentiates two

(possibly correlated) Normal random variables, and then takes the difference between these

Log-Normal values.

Unlike the sum of Log-Normal RVs, which is approximately Log-Normal and has been

used in several disciplines including telecommunication, actuary, insurance, and derivative

valuation, the Difference-of-Log-Normals distribution is almost completely unexplored. At

the time of writing, I was unable to find instances of using it anywhere in the sciences, and

only two statistical works tangentially considering it: Lo (2012); Gulisashvili and Tankov

(2016). Both papers concentrate on sums of Log-Normals but show their results hold for

differences of Log-Normals as well, under some conditions. Nevertheless, this work shows

both empirically and theoretically that the novel Difference-of-Log-Normals distribution is

widespread in economic data.
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Formally, define W such that

W = Yp − Yn = exp(Np)− exp(Nn)

with (Np, Nn) bivariate Normal, i.e. (Np, Nn)
T ∼ N(µ,Σ) with parameters

µ =

µp

µn

 ; Σ =

 σ2
p σp · σn · ρpn

σp · σn · ρpn σ2
n


We say W follows the five-parameter Difference-of-Log-Normals distribution, and denote

W ∼ DLN(µp, σp, µn, σn, ρpn).

Recall that we motivated the Normal and Log-Normal distributions based on the addi-

tive and multiplicative CLTs, concluding that phenomena in nature which are the sum or

product of many latent random forces will tend to distribute Normally and Log-Normally,

respectively. Consider now a natural phenomenon impacted by two main forces operating

in opposite directions, i.e., W = Yp − Yn. If each of the two main forces is an additive

combinations of many latent random forces, then the natural phenomenon W will tend to

distribute Normally as well. In this case, the importance of modeling the two forces sep-

arately is diminished because aggregating them yields a model with similar distributional

predictions.

The same is not true, however, if each force is a multiplicative combination. In this case,

failing to explicitly model both forces will yield markedly different predictions, because the

difference between two Log-Normal RVs does not collapse to a Log-Normal RV. For one,

Log-Normal RVs are strictly positive (i.e., uni-directional), while Difference-of-Log-Normals

RVs can clearly take any value on the real line R (i.e., bi-directional, similar to the Normal).

Further, the Difference-of-Log-Normals exhibits Log-Normal tails in both the positive and

negative directions, yielding a distributional shape quite different from the Normal “Gaussian

bell curve.”

From an economic perspective, the stochastic process giving rise to the Difference-of-Log-

Normals distribution can be described as a VAR(1) process in logs
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xi,t+1

yi,t+1

 = R ·

xi,t

yi,t

+

ϵxi,t

ϵyi,t

 ;

ϵxi,t

ϵyi,t

 ∼ N(0,Σ)

where R is the 2x2 autocorrelation matrix and the disturbance term is a mean-zero bivariate

Normal with Σ its covariance matrix. The process

Wi,t = exp(xi,t)− exp(yi,t) = Xi,t − Yi,t

will tend to distribute as the Difference-of-Log-Normals because each of Xi,t, Yi,t will tend to

distribute Log-Normal as discussed above.

Two important facts about the Difference-of-Log-Normals are worth noting. First, it is

closed under multiplication and division by a Log-Normal RV. I.e., if W is DLN-distributed

and L is LN-distributed, then W ·L and W/L will both distribute DLN as well — a property

derived from the closure of Log-Normals under multiplication and division. Second, empirical

work suggests that the DLN distribution subsumes the case of a difference between two Log-

Skew-Normal random variables.7 I.e., there appears to be no extra benefit from modeling a

phenomenon as a Difference-of-Log-Skew-Normals over modeling it as a Difference-of-Log-

Normals.

Empirical work with the Difference-of-Log-Normals is slightly more complicated than

with the other distributions discussed so far, because no standard testing or estimation

procedures for the distribution exist in common statistical packages. The online appendix

describes how to construct these procedures, and provides a full suite of computer code

implementing the PDF, CDF, estimation and testing for the distribution.

A second reason the Difference-of-Log-Normals is more complicated to deal with is the

bi-directional log-tails (both positive and negative), “inherited” from the two Log-Normals

composing it. The usual method of dealing with exponential data — taking logs — can-

not be used because of the existence of negative values. The next section hence discusses

the intimate relation between the Difference-of-Log-Normals distribution and Hyperbolic

7Because the definition of the DLN allows the two generating Normal RVs to be correlated.
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Trigonometry, especially the Hyperbolic Sine function. It further demonstrates how this

relation simplifies working with the distribution and proposes the Inverse Hyperbolic Sine

as a natural “log-like” transform in both the positive and negative directions.

2.6 The Difference-of-Log-Normals and Hyperbolic Trigonometry

“Regular” trigonometry, also known as circular trigonometry, is based on the unit circle,

given by the equation X2 + Y 2 = 1. Hyperbolic trigonometry, in comparison, is based on

the unit hyperbola, given by the equation X2 − Y 2 = 1. The two are tightly related, as can

be seen, e.g., by the definitions of the circular and hyperbolic Sine functions, given by:

sin(x) =
eix − e−ix

2i
; sinh(x) =

ex − e−x

2

and their inverses:

asin(x) = log
(
ix+

√
1− x2

)
· i−1 ; asinh(x) = log

(
x+

√
1 + x2

)
such that x = asin(sin(x)) = asinh(sinh(x)) and i =

√
−1 is the imaginary unit.

Our interest in the hyperbolic functions stems from the fact that a function given by

a difference of exponentials can be factored into an exponential multiplied by a hyperbolic

Sine. That is,

W = X − Y = exp (x)− exp (y) = 2 · exp
(
x+ y

2

)
· sinh

(
x− y

2

)
(3)

is the hyperbolic equivalent of moving from cartesian (i.e., X,Y) coordinates to polar (i.e.,

r,θ) coordinates in circular trigonometry. The hyperbolic equivalents of the radius and angle

are given by:

λ =
x+ y

2
= log

(√
X · Y

)
; τ =

x− y

2
= log

(√
X/Y

)
(4)

in which λ is the equivalent of the radius and τ is the equivalent of the angle. The inverse

mapping between (X, Y ) and (λ, τ) is then given by:

X = exp (λ+ τ) ; Y = exp (λ− τ) (5)
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with λ the mid-point between x = log (X) and y = log (Y ), and τ the (equal) distance

from λ to x and y, with the appropriate sign. Clearly, one can equivalently describe a DLN

phenomenon by specifying its dynamics in the (X, Y ) space or the (λ, τ) space. In what

follows, we will see that the (λ, τ) representation is both more intuitive and more amenable

to mathematical analysis than the (X, Y ) representation.

Note that the identity in (3) provides a first-principles justification for using the Inverse

Hyperbolic Sine (asinh) transform when encountering DLN-distributed data, which is “gen-

erated” by the Hyperbolic Sine (sinh). The asinh transform has been the subject of recent

econometric work, including Bellemare and Wichman (2020); Aihounton and Henningsen

(2021); Mullahy and Norton (2024), mostly discussed in the context of ad-hoc transforma-

tions of non-negative values that include zeros. Here, it arises as the natural function to

transform “bi-directional-Log-Normal” data, i.e. data that exhibit Log-Normal tails in both

the positive and negative directions. From a practical perspective, the asinh transform has

several desirable properties:

1. Differentiable and strictly increasing in x.

2. Odd function, such that asinh(−x) = −asinh(x).

3. Zero based, such that asinh(0) = 0.

4. asinh(x) ≈ sign(x)(log|x|+ log(2)), with the approximation error rapidly vanishing as

|x| increases.

Hence, asinh is a bijection similar in flavor to the oft-used neglog transform:

neglog(x) = sign(x) log(1 + |x|) (6)

but with less distortion than the neglog around 0, at the cost of the bias term log(2) ≈ 0.7.
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2.7 Pareto, Zipf, Power-law, and Exponential distributions

A final set of distributions important for our discussion are the Power-law distributions

and their transform, the Exponential distribution. This is because pivotal existing work

on size distributions has focused on Pareto, Zipf, and Power-law distributions more gener-

ally, especially around the right tail (Gabaix, 1999a,b; Axtell, 2001; Luttmer, 2007; Gabaix,

2011). A Power-law distribution has the general form f(x) ∝ x−(α+1), with Pareto being its

continuous archetype and Zipf its discrete analog.

Importantly, Power-law random variables (RVs) are transformed into Exponential RVs

when taken in logs. That is, we have

X ∼ Pareto(xmin, α), Y = log

(
X

xmin

)
⇒ Y ∼ Exponential(λ = α).

which in turn means that testing for size being Power-law distributed is equivalent to testing

whether magnitude distributes Exponential.8 Put differently, Power-law distributions can

be referred to as Log-Exponential, in a similar way to the Log-Normal.

3 Empirical tests of distributional predictions

Equipped with a CLT-based theoretical framework proposing specific distributional forms

and with mathematical tools to aid in the analysis, we next move on to testing these theoret-

ical predictions in the data. In what follows, I concentrate on firm data and firm dynamics,

but as Figure 1 exhibited, the analysis can be generalized to other phenomena, including

cities, pandemics, wages, etc.

3.1 Firm Data

The firm data analyzed below cover all public U.S. firms in the 50-year period 1970-2019,

with minimal filtering, resulting in 192K firm-year observations on 20K distinct firms. Data

8This is why Pareto/Zipf RVs are usually tested as a straight line on a log-log histogram: it is in effect a
visual test of whether the log variable distributes Exponential.
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are predominantly derived from the yearly CRSP/Compustat data set. For some tests related

to equity returns I use higher-frequency CRSP data. Other minor data sources include the

nominal and real GDP series from FRED and factor returns from Ken French’s website.

Data variables are identified throughout by two capital letter mnemonics (e.g., SL for

firm sales). Table 1 defines all data variables and provides a mapping to Compustat items

used to construct them. I rely on the sources and uses identity,

sales︸︷︷︸
SL

− expenses︸ ︷︷ ︸
XS

= income︸ ︷︷ ︸
CF

= total net disbursement︸ ︷︷ ︸
DI

+total net investment︸ ︷︷ ︸
IT

(7)

to calculate expenses as dissipated sales (i.e., sales - income). This guarantees all expenses,

including labor, cost of goods, selling, general, administrative, taxes, and various “special”

and “one-time” expenses are accounted for.9

I consider two approaches to adjusting historical dollar values to 2019 dollars: (i) using the

(real) GDP-deflator to adjust to real 2019 dollars; and (ii) using nominal GDP as the deflator.

The first approach only adjusts for inflation, while the second adjusts for both inflation and

the economy-wide secular growth trend, thus yielding a stationary firm size distribution, an

observation we will return to later. All results are reported using the nominal-GDP deflated

data, i.e., in 2019 dollars with a 2019-sized economy, but I verify they all hold when using

the real GDP deflator instead.10

Finally, note that a limitation of the analysis is the concentration on public firms, driven

by data availability and quality. The selection into being public is not random, and many

smaller firms, as well as some larger firms, are private and absent in the data. Nevertheless,

the largest (and most economically consequential) firms are generally public. Hence, the

results below discussing the largest firms, i.e., the much-debated right-tail of the firm size

distribution, are unlikely to be overturned by the inclusion of private firm data.

9Using a traditional “top-down” definition of expenses does not materially change any of the results.
10Employee counts are similarly normalized by dividing each count by the total employee count for the

year and then multiplying by the 2019 total employee count.
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Table 1
Data definitions

This table defines all data items used. Data cover public U.S. firms in the 50-year period
1970-2019, as described in Section 3.1. The first column is the name of each data item and the
second is the mnemonic used throughout. The third column is the mapping to Compustat
items or previously defined mnemonics, and the fourth is a short description. The core
accounting identity used is the sources and uses equation: income = sales - expenses = total
disbursement + total investment. The “L.” is the lag operator.

Name XX Definition Description

Equity value EQ mve market value, year end
Debt value DB lt book total liabilities
Total value VL EQ + DB equity + debt
Equity disbursement DE dvt + (prstkc - sstk) dividends + net repurchase
Debt disbursement DD xint + (L.DB-DB) interest paid + decrease in debt
Total disbursement DI DE + DD to equity and debt
Physical capital KP ppent PP&E, net of depreciation
Total capital KT at total assets (tangible)
Depreciation DP dp of physical capital
Physical investment IP KP - L.KP + DP growth in physical capital
Total investment IT KT - L.KT + DP growth in net assets
Income CF DI + IT bottom-up free cash flows
Sales SL sl total sales
Expenses XS SL - CF dissipated sales
Employees EM emp number of employees

Productive magnitude1 LM
√
SL · XS = exp(λ)

Productive efficacy1 TU
√

SL/XS = exp(τ)
1 In exponentiated terms, for compatibility with the other values.
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3.2 Firm size and magnitude

Which economic measure best captures firm size (and its log, firm magnitude)? The firm

growth literature tends to use employees (EM) or sales (SL) as the preferred measures of

size, the asset pricing literature tends to use market value of equity (EQ), and the corporate

finance literature tends to use total capital stock (KT). To these, I add firm expenses (XS).

While using expenses to measure firm size is not common, it is in-line with the common

approach of using number of employees as a measure of firm size. Using expenses has the

benefits of being widely available for all firms and being more holistic, i.e. neutralizing

the “build vs. buy” decision of firms. Finally, I also add the firm productive magnitude

measure, λ, defined per (4) to be the (log) geometric mean of firm sales and expenses. All

analysis in this section is done using firm magnitudes (i.e., the natural logs of the relevant

size measures).

Panel (a) of Table 2 reports the first four central moments of each magnitude measure,

as well as their median and inter-quartile range (IQR). All dollar magnitudes have mean and

median around 6.5 (≈665M 2019$), and employee magnitude has mean and median around

7.5 (≈2000 employees). All magnitudes have a standard deviation around 2.1, modest posi-

tive skewness around 0.2 and kurtosis very close to 3, the kurtosis of the Normal distribution,

i.e., magnitudes exhibit no heavy tails (and if anything, present slightly lighter tails than

the Normal, as kurtosis is lower than 3 for all of them).

That all magnitude measures have such close moments is not surprising, as Panels (b) and

(c) of Table 2 show. In panel (b), we see that all magnitude measures are highly correlated, as

expected, and in Panel (c) we see they are in fact all co-integrated. Because the cointegration

tests of Pedroni (2004) and Westerlund (2005) require balanced panels, Panel (c) presents

the tests by decade and includes all balanced panels available within the decade.11 The

hypothesis of no cointegration is strongly rejected by all tests for all decades. Intuitively,

11I exclude the productive magnitude measure λ as it is cointegrated with SL and XS by construction and
will skew the test results in favor of finding cointegration.
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we can say that all magnitude measures carry the same signal, with some measure-specific

noise.

Visual evidence on the distribution of firm magnitudes is presented in Figure 2. Panels

(a) and (b) present the distributions of firm market value of equity EQ and total assets KT,

respectively, in the data. The figures are overlaid with fitted Normal, Skew-Normal, and

Exponential distributions.12 The fit to Skew-Normal is evident, as is the mismatch with

the Exponential. This visual test between the Normal and Skew-Normal is confirmed by

Panel (c), which presents quantile-quantile (q-q) plots for firm assets KT. The q-q plots

compare the empirical vs. a specific theoretical distribution. If the two match, all quantiles

will reside on the y=x line. The Normal presents tail-deviations, while the Skew-Normal

presents excellent fit, even at the uppermost right tail of largest firms.

The above observation is however “unfair” to the Exponential distribution, as the Power-

Law hypothesis specifically limits itself to the right tail of the firm size distribution. To that

end, Panels (d)-(f) concentrate on the right tails of three other firm magnitude distributions:

employees EM, productive magnitude LM, and firm sales SL, respectively. The figures

present the upper decile (top 10%) of the respective magnitude distributions, overlaid with

truncated versions of the Normal, Skew-Normal, and Exponential. The poor fit of the

Exponential, especially for the largest of firms at the right tail, is evident in the corresponding

q-q plots in Panels (g)-(i). That the upper-tail deviations are below the line indicates the

Power-Law hypothesis inflates the expected number of very large firms relative to the data.

Note that the fit lines for the Normal and Skew-Normal are indistinguishable from each other,

proposing skewness is unnecessary to describe the right tail of magnitude distributions, and

it is well described by a Normal tail.

To avoid relying on visual inference alone (and especially “ocular tests of straight lines,”

which Clauset, Shalizi, and Newman (2009) show are often misleading), formal statistical

tests against the Normal, Skew-Normal, and Exponential are presented in Table 3. Following

12Fitted via Maximum Likelihood Estimation (MLE).
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Clauset et al. (2009), I use three different distributional goodness-of-fit tests: Kolmogorov-

Smirnov (K-S), Chi-square (C-2), and Anderson-Darling (A-D). The three tests are sensitive

to different distributional deviations — K-S has uniform power throughout, C-2 is more

powerful around the center-mass, and A-D is more powerful around the tails — I hence

report results for all three tests. To account for the different number of parameters in

each distribution, I also include the Akaike and Bayesian Information Criteria-based relative

likelihood tests (AIC and BIC). The first six columns present tests for the full data, and the

last six present tests for the upper decile tail.

At the left side of Panel (a), we can see that Normality is generally rejected, at the 5%

confidence level, for the full data. At the right side, we can see that it is generally not

rejected for the upper tail. The left side of Panel (b) indicates Skew-Normality is generally

not rejected for the full data, and is similarly not rejected for the upper tail. In Panel (c),

the Exponential distribution is overwhelmingly rejected for the full data, as expected, and

is similarly strongly rejected for the upper tail. These results hold when considering instead

the top 20%, 5%, or 1% of firms.

The relative likelihood tests in Panel (d) favor the Skew-Normal for the entire distribution,

but imply that the Normal suffices for the tail. That is, Normality explains the tail sufficiently

well, and the skewness parameter does not “carry its weight”. We can hence conclude that

the size distribution of firms in the data is rejected as being Power-law (Pareto, etc.) or

Log-Normal, but is not rejected as being Log-Skew-Normal, either for the entire distribution

or for the right tail, though for the right tail it is redundant and Log-Normality suffices.

Even for the entire magnitude distribution, the estimated skewness parameters are modest,

as are the deviations from Normality, and Log-Normality is a very good approximation for

firm size across the entire data.

Economic implications. The prevailing view, following the Simon–Ijiri tradition and

crystallized by Axtell (2001); Luttmer (2007); Gabaix (2009), is that the upper tail of the
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Table 2
Magnitude - Descriptive statistics

Panel (a) of this table presents the first four central moments of firm magnitude, based on six
alternative measures, as well as their Median and IQR. Variable definitions are in Table 1.
Panel (b) presents the correlations between the measures. Panel (c) presents the results of
three cointegration tests between all magnitude panels, with the first two tests from Pedroni
(2004), and the third from Westerlund (2005). The first two test the null of no cointegration
vs. the alternative that all panels are cointegrated while the third tests vs. the alternative
that some panels are cointegrated. Tests are conducted by decade, on the available balanced
sample of measures within each decade.

Panel (a): Magnitude = log(XX) moments

EM SL EQ KT XS LM

M1 (mean) 7.59 6.41 6.21 6.65 6.34 6.37
M2 (s.d.) 2.06 2.13 2.17 2.12 2.04 2.08
M3 (skew) 0.06 0.07 0.26 0.37 0.22 0.17
M4 (kurt) 2.75 2.86 2.73 2.98 2.77 2.75
Median 7.56 6.37 6.08 6.52 6.26 6.31
IQR 2.92 2.90 3.07 2.89 2.85 2.88

Panel (b): Magnitude correlations

SL EQ KT XS LM

EM .914 .732 .787 .916 .919
SL .809 .885 .982 .996
EQ .868 .800 .809
KT .870 .881
XS .995

Panel (c): Magnitude cointegration tests

Phillips-Perron t p-val Dickey-Fuller t p-val Variance ratio p-val
70’s 38.97 <0.001 -47.15 <0.001 11.91 <0.001
80’s 44.45 <0.001 -40.24 <0.001 18.21 <0.001
90’s 48.71 <0.001 -50.40 <0.001 24.44 <0.001
00’s 50.84 <0.001 -66.07 <0.001 20.40 <0.001
10’s 49.73 <0.001 -42.67 <0.001 20.95 <0.001
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Fig. 2. Magnitude - Distributions. This figure presents stylized facts of the firm magnitude
distributions. Panels (a) and (b) present the full distributions of (log) equity value EQ and
total capital KT respectively, overlaid with fitted Normal (solid blue), Skew-Normal (dashed
red), and Exponential (dotted yellow) distributions. Panel (c) presents the q-q plot for
the Normal and Skew-Normal fits. Panels (d),(e),(f) present the top 10% magnitude tails of
employees (EM), productive magnitude (LM), and sales (SL), overlaid with truncated version
of the Normal, Skew-Normal, and Exponential. Panels (g),(h),(i) present the respective q-q
plots.
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Table 3
Magnitude - Distributional tests

This table presents results of tests of distribution equality for firm magnitudes based on
the measures described in Table 1. The first 6 columns pertain to the entire data, while
the last 6 column pertain to the truncated top 10% of observations by size. K-S is a Kol-
mogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D is an Anderson-Darling
test. Panels (a)-(c) report the test statistics and their p-values for the Normal, Skew-Normal,
and Exponential, respectively. Panel (d) reports the AIC- and BIC-based relative likelihoods
for each distribution.

EM SL EQ KT XS LM EM SL EQ KT XS LM

Panel (a): Magnitudes vs. Normal

K-S 0.017 0.009 0.029 0.026 0.021 0.016 0.005 0.006 0.008 0.014 0.006 0.007
p-val 0.040 0.065 0.026 0.028 0.035 0.042 0.095 0.082 0.067 0.047 0.085 0.079
C-2 108.3 38.25 >999 206.8 145.9 92.84 43.31 39.14 46.18 74.62 32.50 30.18
p-val 0.037 0.060 0.000 0.026 0.032 0.039 0.056 0.059 0.055 0.044 0.064 0.066
A-D 5.728 2.200 16.37 17.98 10.68 6.698 0.328 0.455 1.751 3.457 0.567 0.414
p-val 0.041 0.056 0.027 0.026 0.032 0.039 0.101 0.091 0.060 0.049 0.085 0.094

Panel (b): Magnitudes vs. Skew-Normal

K-S 0.015 0.006 0.012 0.009 0.010 0.010 0.005 0.006 0.008 0.014 0.006 0.007
p-val 0.045 0.090 0.053 0.063 0.058 0.061 0.095 0.082 0.067 0.047 0.085 0.079
C-2 83.72 20.17 27.50 38.02 41.96 33.72 43.31 39.14 46.18 74.62 32.50 30.18
p-val 0.041 0.081 0.069 0.060 0.057 0.063 0.056 0.059 0.055 0.044 0.064 0.066
A-D 4.057 0.615 2.594 1.629 2.239 1.873 0.328 0.455 1.751 3.457 0.567 0.414
p-val 0.046 0.083 0.053 0.062 0.056 0.059 0.101 0.091 0.060 0.049 0.085 0.094

Panel (c): Magnitudes vs. Exponential

K-S 0.391 0.341 0.332 0.353 0.351 0.344 0.062 0.048 0.035 0.035 0.046 0.047
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.014 0.021 0.021 0.015 0.014
C-2 >999 >999 >999 >999 >999 >999 501.6 260.3 216.2 149.7 244.5 243.3
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.023 0.026 0.031 0.024 0.024
A-D >999 >999 >999 >999 >999 >999 82.89 44.66 29.98 23.28 41.09 41.15
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.016 0.020 0.023 0.017 0.017

Panel (d): Distribution comparison

AIC R.L.:
Normal 0.004 0.004 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Skew-N 1.000 1.000 1.000 1.000 1.000 1.000 0.368 0.368 0.368 0.368 0.368 0.368
Exp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BIC R.L.:
Normal 0.145 0.143 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Skew-N 1.000 1.000 1.000 1.000 1.000 1.000 0.010 0.010 0.010 0.010 0.010 0.010
Exp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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firm size distribution is well described by a Pareto law. Later work (e.g., Kondo, Lewis,

and Stella (2018)) revisits this with richer microdata and formal tail tests, finding the Log-

Normal outperforms Pareto, consistent with the results above. Analogously, for income data,

Azzalini, Cappello, and Kotz (2002) show that the Log-Skew-Normal dominates Pareto both

overall and in the right tail (reviving the findings of Roy (1950)).

The tail shape matters for at least three active debates: (i) the granular hypothe-

sis (Gabaix, 2011), where the tail index governs how much idiosyncratic shocks to very

large firms survive aggregation; (ii) optimal top marginal tax rates for labor income, where

sufficient-statistic formulas use the Pareto tail parameter of top incomes (e.g. Diamond and

Saez, 2011; Piketty, Saez, and Stantcheva, 2014); and (iii) firm dynamics and selection models

in the spirit of Luttmer (2007), where the stationary size distribution (and its tail exponent)

is an equilibrium object pinned by entry, exit, and the structure of the model.

If the empirical tail for firm sizes is Log-Normal over economically relevant ranges, then

(i) the contribution of “granular” shocks may be overstated; (ii) income-tax formulas remain

valid for incomes; and (iii) quantitative firm-dynamics models should be calibrated/designed

to reproduce Log-Normal (or Log-Skew-Normal) stationary size distributions, which can

alter implied selection strength, misallocation wedges, and the mapping from micro shocks

to macro outcomes.

3.3 Firm flows and ratios

After reviewing the distribution of firm magnitudes, which are inherently “stock” mea-

sures, we turn our attention to the three core “flow” measures of the firm, namely income,

disbursement, and investment, connected by the firm’s fundamental sources and uses identity

in (7).

What is the statistical distribution of firm income? Firm income is of utmost importance

in the theory of the firm as well as in both major branches of financial economics: corporate

finance and asset pricing. Income is both the means to growth — providing money for
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investments, and the ends of growth — providing money for disbursements (e.g., dividends).

Firm value is generally defined as discounted expected income. It is hence quite surprising

that the statistical distribution of income has seen such scant interest in the economics and

finance literature, and is hitherto unspecified.

Nevertheless, the fundamental sources and uses identity of the firm in (7) defines income

as sales minus expenses. As the previous section showed, both sales and expenses are approx-

imately Log-Normally distributed, with their generating Normals highly correlated. We can

hence directly deduce that income (CF) should distribute as the Difference-of-Log-Normals.

The relevant figures for the three core firm flows are presented in Figure 3. Panels

(a)-(c) present the distributions of income, disbursement, and investment, respectively, but

truncated to the [−$50M, $100M ] range. All three exhibit clear log-tails in both the positive

and negative directions. The common way of dealing with exponential tails – applying a log

transform – hence cannot be used. As discussed above, the Inverse Hyperbolic Sine (asinh)

transform allows us to overcome this problem, so Panels (d)-(f) present the entire data for

each flow distribution, but with the X-axes transformed using asinh. The resulting two

“Normal bell curves” are unmistakable. Panels (g)-(i) present the q-q plots of each vs. the

Difference-of-Log-Normals, confirming the remarkable fit. The first three columns of Table 4

further confirm these predictions using formal statistical tests.

The two “Normal bells” in Panels (d)-(f) merit further discussion. In effect, they tell us

that each of profits and losses is approximately Log-Normal, because the asinh transform

acts as a log in both the positive and negative directions. They are outcomes of the obser-

vation that profit (and loss) are correlated with firm size: small firms make or lose small

amounts of money, while large firms make or lose large amounts of money. Another way

of conceptualizing it is by using the equation CF = 2 · exp(λ) · sinh(τ) and noting that the

τ component mostly moderates the sign of cashflows, while the magnitude of cashflows is

largely governed by λ. That is, the two Normals at the positive and negative directions are
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merely (near-exact) copies of the distribution of λ, mirrored.13 This further lends credence

to the observation that firm magnitude distributes approximately Normally.

Table 4
Flows and ratios - Distributional tests

This table presents results of tests of distribution equality to the Difference-of-Log-Normals
for firm flows and ratios based on the measures described in Table 1. The first 3 columns
pertain to the major flow variables income (CF), disbursement (DI), and investment (IT).
The next 6 columns pertain to major firm ratios: IT/EM, CF/SL, CF/EQ, DI/EQ, CF/KT,
IT/KT. K-S is a Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D is an
Anderson-Darling test.

CF DI IT IT/EM CF/SL CF/EQ DI/EQ CF/KT IT/KT

K-S 0.005 0.004 0.008 0.044 0.006 0.012 0.007 0.011 0.008
p-val 0.098 0.121 0.069 0.016 0.089 0.053 0.075 0.055 0.068
C-2 13.66 11.63 30.70 247.9 17.45 39.14 29.50 38.51 33.87
p-val 0.100 0.111 0.066 0.024 0.087 0.051 0.067 0.052 0.063
A-D 0.588 0.344 1.119 17.33 0.465 2.364 1.084 2.109 1.791
p-val 0.084 0.099 0.069 0.026 0.090 0.051 0.070 0.054 0.060

Note that the closure of the Difference-of-Log-Normals to division by a Log-Normal im-

plies that all “intensity” values for these flow variables should distribute DLN as well.

This means any value of the form {CF,DI, IT}/{EM,SL,EQ,KT,XS, LM} should have

a Difference-of-Log-Normals distribution.14 Such ratios include the oft-used: (i) investment

per worker (aka capital deepening, IT/EM), (ii) cashflow margin (CF/SL), (iii) cashflow yield

(CF/EQ), (iv) disbursement (aka dividend) yield (DI/EQ), (v) return on assets (CF/KT),

(vi) investment rate (IT/KT), and many other lesser-used or hitherto undefined ratios (for

the case of division by LM, which is a novel construct). The last six columns of Table 4

present formal statistical tests largely supporting this prediction, and Figure 4 presents vi-

sual evidence for three of the major ratios: CF/SL, DI/EQ, and IT/KT in Panels (a)-(c),

along with the relevant q-q plots in Panels (d)-(f).

Finally, note the two typical “appearances” of the Difference-of-Log-Normals distribution,

e.g., Panel (d) of Figure 3, with two “gaussian bells” vs. Panel (b) of Figure 4, with a single

“spike”. The two are equivalent, as can be seen by Panels (g)-(i) of Figure 4. For each of the

13This is because Var[λ] ≫ Var[τ ].
14With the denominators properly lagged to beginning of period values.
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three ratios, these panels present the histogram of 1000 × ratio (with x-axes still in asinh

scales), again exposing the gaussian bells.15 The need to multiply by e.g. 1000 is an artifact

of the scale dependence of the asinh transform, as discussed by Bellemare and Wichman

(2020), and merely moves the two “bells” away from zero (where they are “compressed” to

create a spike) so they can be observed separately.

Economic implications. The finding that all firm flow and intensity variables distribute

DLN hands us a single, coherent statistical backbone for a big swath of firm fundamentals

and theories. This resolves many quantitative “puzzles”, which are in essence predicated on

implicit or explicit assumptions regarding the Normality of intensity variables:

1. Large cash holdings are rationalized as buffers against occasional large losses or large

investment needs without invoking extreme risk aversion

2. Investment per worker and related intensities are DLN, implying the cross-section of

technology adoption is heavy-tailed as well. This yields persistent right-tail firms with

very high capital intensity, contributing to dispersion in wages and the labor share

through composition effects.

3. Disbursement (i.e. dividend) yields distribute DLN, implying asset pricing valuation

ratios should be heavy-tailed and distribute DLN as well, as value is defined to be

discounted expected dividends, thus eliminating the concept of “black swans.”

4. In structural corporate finance, tail–aware earnings dynamics lower optimal leverage

and widen no–issuance regions relative to Gaussian benchmarks while increasing re-

covery dispersion (Hennessy and Whited, 2005).

5. As in Gabaix (1999a, 2011), this distributional shape “helps constrain further theories”

by giving us a target to aim at when constructing firm models. Section 4 does exactly

15I.e., instead of measuring growth in log-point units, we measure it in log basepoint units, defined to be
1/1000 of a log-point.
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Fig. 3. Flows - distributions. This figure presents the distributions of the three major firm
flows: income (CF), disbursement (DI), and investment (IT). Panels (a)-(c) present the
truncated distribution of each flow in linear X-scale, between the values -50 and 100 in 2019
$M terms. Panels (d)-(f) present the full distributions, with asinh-scaled X-axes. Panels
(g)-(i) present the respective q-q plots for the full distributions.
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Fig. 4. Ratios - distributions. This figure presents the distributions of three major firm
ratios: cashflow margin (CF/SL), disbursement yield (DI/EQ), and investment intensity
(IT/KT). Panels (a)-(c) present the full distribution of each ratio. Panels (d)-(f) present the
respective q-q plots. Panels (g)-(i) present the distribution of the transformed ratios, 1000
× ratio. The X-axes of all figures are in asinh-scale.
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that, presenting a firm/industry model which yields DLN flows and ratios using a

novel production function.

3.4 Firm growth and returns

After considering both firm stock and flow data and ascertaining that they follow the

theoretical distributional predictions of Section 2, we turn our attention to the third category

of firm data: firm growth. Firm growth is defined throughout as the change in firm magnitude

between consecutive periods (which is simply the standard log-point growth in size measure).

That is, for any size measure XX ∈ {EM,SL,EQ,KT,XS, LM} and related magnitude

measure log(XX), firm growth from period t− 1 to period t is defined as

dXXt ≡ log(XXt)− log(XXt−1)

Unlike firm cashflows, the statistical distribution of firm growth rates in the data has

been of considerable interest to scholars, mainly concentrating on their observed deviations

from Normality. Ashton (1926) is the first to document that the growth of British textile

businesses in the period 1884 − 1924, measured by the number of spindles employed, was

heavy-tailed (i.e., non-Normal). Nevertheless, the assumption that growth rates are Normal

has been ubiquitous in economic models (Lucas, 1978; Klette and Kortum, 2004) due to its

simplicity, often referring back to the work of Gibrat (1931).

Figure 5 presents the empirical distributions of the growth in sales (dSL), capital (dKT),

and productive magnitude (dLM) over the research period. Each of the Panels (a)-(c) is

overlaid with a fitted Difference-of-Log-Normals distribution as well as two Normal distri-

butions: one fitted via Maximum Likelihood (i.e., by matching the standard deviation of

the data, as usual), and one fitted via Least-Absolute-Deviations (LAD, i.e., by matching

the inter-quartile-range of the data). The fit of the DLN is remarkable, as can also be seen

in the associated quantile-quantile plots in Panels (d)-(f). The Normals offer a poor fit, as

the figures ascertain, and are unable to match the distributional shape or heavy tails using

32



either method.

-1.5 -1 -0.5 0 0.5 1
dSL (asinh)

D
en

si
ty

(a) dSL w/ Normals,DLN

-1 -0.5 0 0.5 1
dKT (asinh)

D
en

si
ty

(b) dKT w/ Normals,DLN

-1 -0.5 0 0.5 1
dLM (asinh)

D
en

si
ty

(c) dLM w/ Normals,DLN

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Inverse DLN, Normal, Normal (LAD) (asinh)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic
al

d
S
L

(a
si
n
h
)

(d) q-q dSL vs. N,NL,DLN

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Inverse DLN, Normal, Normal (LAD) (asinh)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic
al

d
K

T
(a

si
n
h
)

(e) q-q dKT vs. N,NL,DLN

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Inverse DLN, Normal, Normal (LAD) (asinh)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic
al

d
L
M

(a
si
n
h
)

(f) q-q dLM vs. N,NL,DLN

Fig. 5. Growth - distributions. This figure presents stylized facts of firm growth distribu-
tions. Panels (a)-(c) present the histograms of (log-point, yearly) growth in sales SL, capital
KT, and productive magnitude LM, respectively. The panels are overlaid with MLE- and
LAD-fitted Normal distributions (dashed red and dotted yellow, respectively), as well as a
Difference-of-Log-Normals distribution (solid blue). Panels (d)-(f) present the respective q-q
plots.

Two prominent non-Normal alternatives extensively examined in the literature are the

Stable and Asymmetric Laplace distributions. The early contributions of Mandelbrot (1960,

1961) and Fama (1963, 1965) advanced the four-parameter Stable (or Stable–Paretian) family

as a candidate model for stock returns and, by extension, for firm growth. Although subse-

quent empirical analyses (e.g., Officer, 1972) rejected the Stable as an exact description of

return data, it has remained a workhorse approximation in the modeling of financial returns.

The persistence of this specification reflects its analytical tractability and its capacity to

capture the heavy tails (i.e. high kurtosis) observed in empirical return data.
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A parallel strand of research, initiated by Stanley, Amaral, Buldyrev, Havlin, Leschhorn,

Maass, Salinger, and Stanley (1996), proposed the three-parameter Asymmetric Laplace as

an alternative heavy-tailed distribution. A large body of subsequent work demonstrates

that it provides a good approximation to growth data in a variety of domains,16 although

subsequent analysis (e.g., Bottazzi, Coad, Jacoby, and Secchi, 2011; Arata, 2019) formally

rejected it under standard goodness-of-fit criteria as well. Nevertheless, both firm models

(Alfarano and Milaković, 2008; Luttmer, 2011) and econometric work (Toda, 2012; Toda and

Walsh, 2015) used the Laplace as a “target distribution” informing modeling choices.

The economic literature’s sustained interest in the distribution of firm growth stems

in part from the recognition that equity returns constitute a high-frequency index of firm

growth, when firm size is taken as market value of equity (EQ). Indeed, much of the early

work on the distribution of firm growth has been done using stock (and other asset) returns

as a natural laboratory with high-quality and high-frequency data — while most measures

of size are usually observable to the econometrician only at the yearly frequency, asset prices

are observable per month, day, or even second.

Figure 6 hence presents empirical stock return distributions. Return data are from the

CRSP dataset, minimally filtered, and cover the same research period 1970-2019. Panels

(a) and (b) of the figure present the monthly and daily “raw” return distributions, overlaid

with Difference-of-Log-Normals, Asymmetric-Laplace, and Stable MLE-fitted distributions.

Panel (c) again displays the daily return distribution, but this time considers the daily

excess return relative to the Fama-French 3-factor model. The fit of the Laplace and Stable

is much closer than for Normals, as can be expected. Nevertheless, the quantile-quantile

plots in panels (d)-(f) exhibit deviations around the tails for both, while no such deviations

are apparent for the Difference-of-Log-Normals.

To again avoid depending on visual straight-line tests, Table 5 presents comprehensive

statistical tests for the growth of each of the six size measures used throughout, as well as

16E.g. Canning, Amaral, Lee, Meyer, and Stanley (1998), Bottazzi and Secchi (2003, 2006), Gabaix,
Gopikrishnan, Plerou, and Stanley (2006), Buldyrev, Growiec, Pammolli, Riccaboni, and Stanley (2007).
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Fig. 6. Return - distributions. This figure presents stylized facts of higher-frequency firm
return distributions. Panel (a) presents the histogram of monthly raw returns for firms in
the CRSP universe during the period 1970-2019. Panel (b) presents daily raw returns, and
Panel (c) presents daily excess returns (relative to the FF3 model). The panels are overlaid
with MLE-fitted Difference-of-Log-Normals (solid blue), Asymmetric-Laplace (dashed red),
and Stable (dotted yellow) distributions. Panels (d)-(f) present the respective q-q plots.
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all six stock return flavors {Y early,Monthly,Daily}X{raw, xss}, vs. the three candidate

distributions. Neither growth nor returns are generally rejected as being Difference-of-log-

Normals, regardless of specific definitions, as the high p-values in Panel (a) of Table 5

demonstrate. The same data are generally strongly rejected as being Asymmetric-Laplace

or Stable, as Panels (b) and (c), with very low p-values, demonstrate. The test most sensitive

to tail deviations, the Anderson-Darling test, rejects none of the 12 data series as beingDLN-

distributed. It however rejects 11 of the 12 as being Asymmetric-Laplace or Stable, at the

5% level. The other two tests are similarly conclusive. The DLN is also overwhelmingly

favored when conducting an AIC/BIC-based likelihood ratio “horse-race” between the three

distributions.

An intuitive explanation of why growth rates are DLN-distributed stems from a stock

vs. flow analysis. If the flow of value created is DLN-distributed, as shown above both

theoretically and empirically, and the magnitude of this flow of value is cointegrated with

all other magnitude measures, as shown above as well, then a simple stock-flow analysis will

immediately yield that the growth in each stock must distribute similar to the flow-intensity

distribution. The simple intuitive example is a firm with trivial investment-disbursement

decision, which accumulates all its earning into increased capital (or decreased, if earnings

at any period are negative).17 Such a firm will have DLN-distributed growth in capital,

and via the endogenous co-integration channel, DLN-distributed growth in all other size

measures.

Economic implications. As recently discussed by Jaimovich et al. (2023), the non-

Normal features of the return (and generally growth) distributions have first-order impli-

cations to economic questions, including: the sensitivity of aggregate outcomes and policy

responses to micro-level shocks, the dynamics of firm exit and investment decisions, and

the propagation of idiosyncratic shocks into aggregate fluctuations. This is because fat tails,

leptokurtosis, and non-Gaussian transition dynamics radically alter the relationship between

17That is, KTt+1 = KTt + ITt = KTt(1 + ITt/KTt) → dKTt+1 = log(1 + ITt/KTt) ≈ ITt/KTt ∼ DLN.

36



Table 5
Growth - Distributional tests

This table presents results of tests of distribution equality for firm growth and stock return
measures. The first six columns pertain to log-point growth in the six magnitude measures of
Table 2, while the last six columns pertain to log-point stock returns at the Yearly, Monthly,
and Daily frequency, considering both raw and excess (relative to the Fama-French 3 factor
model) returns. K-S is a Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D
is an Anderson-Darling test. Panels (a)-(c) report the test statistics and their p-values for
the Difference-of-Log-Normals, Asymmetric-Laplace, and Stable distributions, respectively.
Panel (d) reports the AIC- and BIC-based relative likelihoods for each distribution.

EM SL EQ KT XS LM Yraw Yxss Mraw Mxss Draw Dxss

Panel (a): Growth / return vs. Difference-of-Log-Normals

K-S 0.009 0.003 0.003 0.007 0.003 0.002 0.005 0.002 0.003 0.001 0.017 0.009
p-val 0.067 0.154 0.181 0.080 0.191 0.206 0.105 0.213 0.174 0.908 0.040 0.063
C-2 46.64 7.989 6.986 18.89 5.191 5.646 10.47 4.922 4.203 0.750 115.0 21.61
p-val 0.054 0.148 0.171 0.084 0.313 0.246 0.119 0.376 0.607 1.000 0.036 0.078
A-D 0.969 0.131 0.145 0.547 0.114 0.081 0.384 0.086 0.085 0.021 1.717 1.520
p-val 0.072 0.136 0.131 0.086 0.144 0.163 0.096 0.160 0.160 0.369 0.061 0.063

Panel (b): Growth / return vs. Asymmetric- Laplace

K-S 0.043 0.037 0.012 0.026 0.044 0.033 0.019 0.022 0.017 0.022 0.039 0.044
p-val 0.016 0.020 0.052 0.028 0.016 0.022 0.038 0.033 0.040 0.033 0.019 0.016
C-2 436.6 359.3 62.79 274.9 566.6 317.6 85.57 104.0 101.0 145.0 551.9 542.1
p-val 0.016 0.019 0.047 0.022 0.013 0.020 0.041 0.037 0.038 0.032 0.014 0.014
A-D 33.38 29.03 2.325 17.74 45.89 23.47 4.699 6.793 6.865 11.17 39.92 48.20
p-val 0.019 0.020 0.055 0.026 0.015 0.023 0.044 0.038 0.038 0.032 0.017 0.015

Panel (c): Growth / return vs. Stable

K-S 0.015 0.012 0.013 0.011 0.010 0.012 0.017 0.016 0.012 0.011 0.017 0.011
p-val 0.044 0.052 0.048 0.055 0.062 0.053 0.041 0.043 0.054 0.055 0.040 0.057
C-2 146.5 103.0 96.96 94.37 78.94 104.6 197.0 185.7 102.7 100.6 316.2 124.2
p-val 0.032 0.038 0.039 0.039 0.043 0.037 0.027 0.028 0.038 0.038 0.020 0.034
A-D 6.697 4.061 4.261 3.909 3.021 4.037 6.966 6.524 3.969 3.741 6.649 4.082
p-val 0.039 0.046 0.045 0.047 0.051 0.046 0.038 0.039 0.046 0.047 0.039 0.046

Panel (d): Distribution comparison

AIC R.L.:
D-L-N 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A-L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BIC R.L.:
D-L-N 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A-L 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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current and future firm value, firm exit rates, and macroeconomic responsiveness compared

to standard Gaussian AR(1) assumptions.

The high kurtosis of the growth distribution concentrates lifetime values near the contin-

uation–exit margin in heterogeneous–firm models, so small wedges move many firms across

it. Entry subsidies raise competitive pressure and improve selection while operating subsi-

dies keep low–efficacy firms alive and worsen selection. The prevailing Normal calibrations

systematically mis-rank these policies and understate exit elasticities. (e.g., Jovanovic, 1982;

Hopenhayn, 1992; Luttmer, 2007). Furthermore, heavier but finite tails widen inaction re-

gions and shift investment thresholds in firm investment models such as Dixit and Pindyck

(1994); Abel and Eberly (1994). Models that match levels yet impose Normal innovations

misstate churn, the dispersion–productivity link, and the speed of selection.

The young age of large firms is also rationalized when one considers a DLN growth

rate, as some firms may enjoy large positive shocks, quickly catapulting them to large sizes

contrary to the predictions of Normal growth rates. A simple Monte-Carlo simulation with

Normal and DLN-distributed growth, both calibrated to the data, shows large firms emerge

quickly (decades) with DLN growth vs. slowly (centuries) with Normal growth.

In an asset pricing context, the Stable family remains in use in parts of empirical finance

even though it lacks finite second and higher moments, the very objects risk measurement

targets, thus providing a precarious basis for Modern Portfolio Theory (MPT). The Stable

was later rejected by Officer (1972), who shows that the second moment of returns in the

data is well-behaved and concludes that “It may be that a class of fat-tailed distributions with

finite second moments will be found [...] but as yet this remains to be clearly demonstrated.”

The DLN has finite moments of all orders, and provides a remarkable match to raw and

factor–adjusted returns. Finally, because inference on factor residuals and “alpha” becomes

fragile when tails are mis-specified, tail robust estimators (i.e., L1-norms rather than L2-

norms) should be used when estimating common asset pricing models. (Fama and French,

1993; Harvey, Liu, and Zhu, 2016).
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Finally, with leptokurtic growth, idiosyncratic shocks survive aggregation more than Nor-

mal models imply, strengthening granular transmission to macro volatility and reallocation

as in Gabaix (2011). Hence, while the findings above regarding the Normality of the magni-

tude distribution weaken the “granular hypothesis”, the findings herein regarding the DLN

growth distribution strengthen it.

4 A general firm model

4.1 Model Setup

State vector. Collect every observable shifter of the firm including, if desired, rivals’

outputs and lags, prices, etc, as well as the firm’s choice variable, assumed here to be

quantity Qt, in

Xt =
[
1, log(Qt), X1,t, . . . , Xk,t

]
∈ Rk+2, Qt > 0.

It is generally assumed that Xi,t are logged when appropriate, e.g. log rivals’ quantities, log

prices, etc. In addition, assume that each Xi,t carries an additive normal error ui,t. This can

arise via classical measurement error, expectational error on future values, AR(1) dynamics

(which we will return to), etc. Note that e.g. if prices follow a geometric Brownian mo-

tion, as generally assumed, then log prices have an unexpected additive Normal component.

Assume that the ui,t are jointly Normal, and possibly correlated between factors i, though

independent across time t.

Log–link primitives. Demand Dt and cost Ct, both in dollar terms, are given by

log(Dt) = dt = θd ·Xt + εd,t, θd = [αd, βd, γd], (8)

log(Ct) = ct = θc ·Xt + εc,t, θc = [αc, βc, γc]. (9)
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and note the parameter vectors θd, θc encompass all information on the firm’s production

technology and cost structure. Taken together, these specifications both generalize and unify

the textbook iso-elastic and power–cost cases, respectively, which remain the workhorses in

applied micro. On the demand side, the iso-elastic quantity law Qt = AP−η
t implies dollar

demand Dt = PtQt = AP 1−η
t , so the coefficient on logPt in (8) satisfies βd = 1− η. On the

cost side, (9) is the cost dual of a Cobb–Douglas technology, yielding log-linear expenditure

in prices (Varian, 1992); more generally, Constant Elasticity of Substitution (CES) “power-

cost” forms Ct = κP ∗
t Q

ζ
t (with P ∗

t an input-price index) imply the coefficient on logQt

equals the cost–output elasticity βc = ζ (ζ = 1 under constant returns). Empirically, these

log-link specifications are ubiquitous in IO/marketing, energy demand, and trade/gravity.

Stochastic structure. The sum of scaled Normals remains Normal, so all noise terms ui,t

are absorbed into εd,t, εc,t, such that [εd,t, εc,t] ∼ N(0,Σdc), with

Σdc =

σ2
d σdc

σdc σ2
c

 , σdc = ρdc σdσc, −1 < ρdc < 1, (10)

is a bivariate Normal error term. Note the special case in which we assume all observables

Xi,t are modeled as a single VAR(1) process, i.e.
X1,t

...

Xk,t

 = (Ik −R) ·M + R ·


X1,t−1

...

Xk,t−1

 + ut,
ut ∼ N(0,Σx),

R,Σx ∈ Rk×k, M ∈ Rk

with ui,t stemming from the VAR(1) process. In this case, (log) demand and (log) cost dt, ct

explicitly inherit a VAR(1) structure such thatdt
ct

 = (I2 −Rdc)Mdc + Rdc

dt−1

ct−1

 + vt,
vt ∼ N(0,Σdc),

Rdc,Σdc ∈ R2×2, Mdc ∈ R2
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with Rdc,Σdc,Mdc functions of the underlying dynamic structure of Xt and the parameter

vectors θd, θc. This allows us to see explicitly how dt, ct will tend to Normality, and how

Dt, Ct will then tend to be LN-distributed in this model. It will also be useful when taking

the model to data.

Profit. The firm’s period-t profit is

Πt(Qt) = Dt − Ct = exp(dt) − exp(ct) (11)

Conditional on Xt, (dt, ct) are jointly Normal with means θd·Xt and θc·Xt, respectively, and

covariance matrix Σdc given by (10). Hence, profit distributes DLN in this general model.

Furthermore, using Log-Normal moments, we have

E[Πt | Xt] = exp
(
θd ·Xt +

1
2
σ2
d

)
− exp

(
θc ·Xt +

1
2
σ2
c

)
. (12)

and for a risk-neutral firm the first-order condition (FOC) on expected profit yields the

closed-form optimum (interior if 0 < βd < βc),

Q⋆
t =

(
βd exp

(
αd +

∑k
i=1 γd,i ·Xi,t +

1
2
σ2
d

)
βc exp

(
αc +

∑k
i=1 γc,i ·Xi,t +

1
2
σ2
c

))1/(βc−βd)

(13)

Note that the covariance term σdc and equivalently the correlation term ρdc do not enter

the expected profit or optimal quantity calculation in this case, as an artifact of the risk-

neutrality assumption. The correlation ρdc instead impacts profit volatility (or “riskiness”)

Var[Πt | Xt]. The higher ρdc, the less volatile profit becomes.

The model is a proper extension, as under the iso–elastic/power–cost restriction βd = 1−η

and βc = ζ, the expression in (13) collapses to the textbook (Varian/Tirole) expression for

a single-product monopolist.

Finally, note the model highlights the idea that adjustment costs, time to build, and

expectational errors are core components in faithfully representing the dynamics of firms. If

firms can freely and flexibly adjust their inputs within period and predict next-period prices

/ economic conditions with certainty, then no firm should ever suffer a loss.
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Market structure. The model is general enough to accommodate a variety of market

structures using different assumptions on the components of Xt:

• Monopoly benchmark: omit rivals’ (log) quantities log(Q−i,t) from Xt.

• Residual demand / Static Cournot: include log(Q−i,t) in Xt. The FOC characterizes

the firm’s best response to the residual demand taking rival’s quantities as fixed, or

solve the system of equations given by each firm’s FOC to get the static Cournot-Nash

equilibrium.

• Dynamic oligopoly: include observable lags of log(Q−i,t−1) inXt to calculate a Markov–perfect

equilibrium as in e.g. Ericson and Pakes (1995).

4.2 Hyperbolic representation of the model

Define the transformed objects bt, at, θb, θa, εb,t, εa,t,

bt =
dt+ct

2
, at =

dt−ct
2

, θb =
θd+θc

2
, θa =

θd−θc
2

, εb,t =
εd,t+εc,t

2
, εa,t =

εd,t−εc,t
2

which yields the expressions for hyperbolic radius and angle,

bt = θb ·Xt + εb,t at = θa ·Xt + εa,t (14)

with [εb,t, εa,t] ∼ N(0,Σba). We then have profit given by

Πt(Qt) = 2 exp
(
bt
)
sinh

(
at
)
, (15)

and expected profit given by

E[Πt | Xt] = 2 exp
(
θb ·Xt +

1
2
(σ2

b + σ2
a)
)

sinh
(
θa ·Xt + σba

)
. (16)

which yields the closed-form optimality condition (for an interior solution |βb/βa| < 1)

tanh(θa ·Xt + σba) = −βb

βa

(17)

or equivalently

Q⋆
t = exp

(
− atanh(βb/βa) + αa +

∑k
i=1 γa,i ·Xi,t + σba

βa

)
.
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which then collapses to (13) when one transforms back to (dt, ct) space. Note (17) can be

interpreted as requiring that the straight line given by varying log(Qt) (a line in (bt, at) space,

whose slope is βb/βa), will be tangent to the iso-expected-profit hyperbolic contour at the

optimum Q⋆
t . It is evident from (15) that the sign of profit is fully controlled by at, with

at > 0 yielding profit and at < 0 yielding loss, and the magnitude of profit/loss is largely

controlled by bt.

4.3 An estimable q-theory variant

So far, we have assumed the firm chooses the quantity of its single product, Qt. This is

difficult to take to data in a multi-product world and absent data on quantities. Instead,

I will now follow the q-theory tradition and assume the firm chooses its capital level Kt.

That is, the firm faces an investment-disbursement decision and chooses how much to invest

vs. how much to disburse to its owners (with negative values representing capital sale and

cash infusions from owners, respectively). The firm makes the decision with the goal of

maximizing firm value, defined as expected discounted disbursements.

The firm’s profit production function is given by

Πt(kt, λt, τt) = 2 exp
(
λt + βλ · kt

)
sinh

(
τt + βτ · kt

)
, (18)

with kt log capital and λt, τt two exogenous stochastic processes given by the VAR(1),λt

τt

 = (I2 −Rλτ )Mλτ + Rλτ

λt−1

τt−1

 + εt,
εt ∼ N(0,Σλτ ),

Rλτ ,Σλτ ∈ R2×2, Mλτ ∈ R2
(19)

which collapses the terms αb +
∑k

i=1 γb,i ·Xi,t + εb,t into λt, and the equivalent a-terms into

τt.

Importantly, the firm’s revenue Dt, expenses Ct, and capital Kt are usually easily ob-

servable. If we assume the two scalars βλ, βτ are known (e.g., due to a first-step estimation),

then one can observe λt, τt by using

λt + βλ · kt = log(
√
Dt · Ct) =

dt + ct
2

; τt + βτ · kt = log(
√
Dt/Ct) =

dt − ct
2

(20)
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and then one can extract the entire VAR(1) structure in (19) via simple MLE. That is,

this setup allows us to easily estimate the two “productivity processes” governing the firm,

without explicitly knowing the values of Xi,t or of the relevant α, γ parameters. Note that

with knowledge of λt, τt, one can now regress them on candidate observablesXi,t (with proper

IVs for εt) to uncover the structure of the revenue and cost functions – or equivalently the

productive magnitude and efficacy functions – of the firm.

All that’s left is to embed this production function into a standard q-theory model of

the firm, with endogenous entry and exit, convex capital adjustment costs, and accounting

for capital depreciation, and then estimate it. The companion paper Parham (2023) does

precisely that, showing in detail how to estimate such models and confirming the model

yields the expected distributions discussed above. The move from the (d,c)-space to the

(b,a)-space is quite useful in this estimation process as well. This is because it turns the two

highly correlated stochastic processes of revenue “productivity” and cost “dis-productivity”

into the nearly uncorrelated productive magnitude and efficacy processes, making them much

simpler to simulate and estimate.

The companion paper also shows that nearly all cashflow growth in the data is driven by

changes in the efficacy τ of firms, rather than changes in their magnitude λ. This implies that

the dynamics of τ — a novel empirical and theoretical object — are of first order importance

to understanding firm dynamics and growth.

Interestingly, the companion paper also shows that the “return to scale” (or profit elas-

ticity w.r.t capital) of the profit production function in Equation 18 is given by:

RTS = βλ +
βτ

tanh (τt)
≈ βλ +

βτ

τt
(21)

explicitly making RTS a state-dependent and firm-specific object, which is nearly linearly

dependent on 1/τ and can “explode” to ±∞ when τ is close to 0 (very common in the data).
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5 Concluding remarks

This paper’s core message is simple: many growth phenomena in economics are best

understood as the balance of two opposing multiplicative forces. When each force is itself

the product of many small shocks, the (multiplicative) Central Limit Theorem (CLT) pushes

each component toward a log-Normal limit. The economically relevant object, however, is

typically a net outcome: sales minus expenses; agglomeration minus congestion; births minus

deaths. This net object then inherits a Difference-of-Log-Normals (DLN) structure. This

is not a modeling outcome. It is an accounting fact combined with a CLT fact.

The paper contributes along three dimensions.

First, it provides a CLT-based taxonomy of limiting distributions that repeatedly arise

in economic contexts: Normal and Skew-Normal limits for additive aggregation with mild

asymmetries; Log-Normal and Log-Skew-Normal limits for multiplicative aggregation; and

DLN limits for net outcomes driven by opposing multiplicative forces. The DLN admits a

natural hyperbolic representation that decomposes a net outcome into productive magnitude

λ and productive efficacy τ , and it delivers a first-principles justification for the use of the

asinh(·) transform when analyzing bi-directional log-tailed data. In practice, this represen-

tation turns two highly correlated log processes (e.g. log sales and log expenses) into two

nearly uncorrelated objects, namely magnitude and efficacy, making both interpretation and

econometrics cleaner.

Second, the paper documents that these predictions organize a broad set of data. In

firm panels, magnitudes are well described by Skew-Normals, with Normal upper tails. Up-

per tails are inconsistent with log-Exponential, i.e. power-law, behavior over economically

relevant ranges. In contrast, net firm flows (cashflows, disbursements, investment), their

key ratios, growth rates, and stock returns at multiple horizons exhibit strong DLN fit

and are generally rejected as being Normal, Asymmetric-Laplace, or Stable under standard

goodness-of-fit tests, including tail-sensitive tests. Empirically, the DLN is not merely a

“heavy-tailed” candidate: it is a disciplined, theory-implied, finite-moment alternative that
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puts probability mass where the data are (lots of modest moves and occasional very large

moves) without requiring infinite-variance “black swans,” time-varying volatility, or explana-

tions outside the firm. Unlike stochastic-volatility or mixture explanations, the DLN arises

even with homoskedastic Normal primitives. More broadly, Figure 1 suggests the same logic

reaches well beyond firms, organizing growth in regional output, pandemic spread, wages,

temperatures, and other settings in which net outcomes reflect the difference of two multi-

plicative components.

Third, the paper shows how to build and estimate economic models that generate DLN

outcomes transparently. The difference-of-log-linears profit production function, a general-

ization of the Cobb-Douglas (or log-linear) production function, embeds DLN net outcomes

into familiar firm environments and makes the (λ, τ) state space operational. Beyond in-

terpretability, it yields testable implications: it links heavy-tailed growth to the interaction

of magnitude and efficacy, implies state-dependent returns to scale through tanh(τ), and

suggests that empirically plausible heterogeneity in efficacy can translate into large and

time-varying differences in effective scale elasticities. The framework also motivates a coher-

ent extension of growth measurement to sometimes-negative variables, as described in the

companion paper Parham (2023). When the object of interest is DLN and generated by

a difference-of-log-linears process, hyperbolic geometry provides a natural generalization of

log-point and percent growth that remains well-defined across zero (i.e., growth to and from

negative values), thus allowing us to discuss the growth of profits and losses without ad hoc

fixes.

Distributional misspecification is not innocuous. A Normal approximation puts proba-

bility in the middle and mutes the margins; a DLN allocates substantial probability to large

moves while retaining finite moments. This shifts value toward exit margins and raises the

elasticity of survival, hiring, and investment to small wedges. These are all mechanisms that

can change quantitative conclusions and even policy rankings (entry subsidies versus oper-

ating subsidies versus taxes) in calibrated or estimated models. Recent work by Jaimovich
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et al. (2023) emphasizes that the non-Normal features of growth and return distributions

can be first-order objects for macro and welfare; the DLN provides a tractable, principled,

and analytic way to take that message seriously without giving up well-behaved moments

or resorting to using empirical distributions. If growth is the foundation, then the law of

motion that governs it is a first-order object; the evidence here suggests that “two-factor”

thinking, and its DLN implications, should be part of the economist’s default toolkit.

Finally, there is a sense in which this paper is simply an extension of Gibrat (1931).

Gibrat’s core insight was that proportional growth makes the log-Normal a fundamental

object for sizes. Gibrat’s goal in his 1931 book was to “convince his readers that this was

a statistical regularity sufficiently sharp to provide a basis for serious mathematical model-

ing” (Sutton, 1997). The core insight here is that opposing proportional forces make the

Difference-of-Log-Normals a fundamental object for net outcomes and growth, in the sense

that it arises in disparate settings where net outcome and growth are concerned, similar

to the repeated occurrence across disciplines of its better-known peers, the Normal and

Log-Normal.
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OA Online Appendix

This appendix fully characterizes the DLN distribution, deriving its Cumulative Dis-

tribution Function (CDF) and Probability Density Function (PDF). It further derives the

moments of aDLN-distributed Random Variable (RV) and discusses a procedure for parame-

ter estimation given data using Maximum Likelihood Estimation (MLE). Finally, it discusses

how to generalize the uni-variate DLN distribution to a multi-variate version using elliptical

distribution theory. To my knowledge, it is the first such treatment of the distribution in the

literature. A complete suite of computer code implementing these procedures for working

with DLN distributions is provided as well.

We define the basic structure of a DLN RV,

W = Yp − Yn = exp(Xp)− exp(Xn) with X = (Xp, Xn)
T ∼ N(µ,Σ)

and denote W ∼ DLN(µp, σp, µn, σn, ρpn). The next section begins by characterizing its

PDF and CDF, as well as discussing the simplified case when ρpn = 0 and the PDF can be

derived as a simple convolution using a Fourier transform.

OA.1 PDF and CDF

The PDF for the Bi-Variate Normal (BVN) RV X is well-known to be

fBV N(x) =
|Σ|− 1

2

2π
· exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
=

|Σ|− 1
2

2π
· exp

(
−1

2
||x− µ||Σ

)
(OA.1)

with |Σ| the determinant of Σ and ||x||Σ the Euclidean norm of x under the Mahalanobis

distance induced by Σ.

The PDF for a Bi-Variate Log-Normal (BVLN) RV Y = (Yp, Yn)
T can be obtained by
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using the multivariate change of variables theorem. If Y = g(X) then

fY (y) = fX(g
−1(y)) · ||Jg−1(y)|| (OA.2)

with Jg−1 the Jacobian matrix of g−1(·) and ||Jg−1|| the absolute value of its determi-

nant. Applying the theorem for Y = g(X) = (exp(Xp), exp(Xn))
T we have g−1(y) =

(log(yp), log(yn))
T and ||Jg−1(y)|| = (yp · yn)−1. The PDF of a BVLN RV is then

fBV LN(y) =
|Σ|− 1

2

2πypyn
exp

(
−1

2
||log(y)− µ||Σ

)
(OA.3)

We can now define the cumulative distribution function (CDF) of the DLN distribution

using the definition of the CDF of the difference of two RV

FDLN(w) = P [W ≤ w] = P [yp − yn ≤ w] = P [yp ≤ yn + w]

=

∫ ∞

−∞

∫ yn+w

−∞
fBV LN(yp, yn)dypdyn

(OA.4)

which can be differentiated w.r.t w to yield the PDF

fDLN(w) =

∫ ∞

−∞
fBV LN(y + w, y)dy =

∫ ∞

−∞
fBV LN(y, y − w)dy (OA.5)

but because fBV LN(y) is non-zero only for y > 0, we limit the integration range

fDLN(w) =

∫ ∞

max(0,w)

fBV LN(y, y − w)dy (OA.6)

which yields the PDF of the DLN distribution.

It is well-known, however, that the integral in equation OA.6 does not have a closed-

form solution. The accompanying code suite evaluates it numerically, and also numerically
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evaluates the CDF using its definition

FDLN(w) =

∫ w

−∞
fDLN(y)dy (OA.7)

For the simpler case with difference of uncorrelated log-Normals, i.e. ρpn = 0, we can

derive the PDF of the DLN via a characteristic function (CF) approach as well. In this

case, we can write the CF of the DLN as φDLN(t) = φLN(t) · φLN(−t) with φLN(t) the CF

of the log-Normal. Next, we can apply a Fourier transform to obtain the PDF,

fDLN(w) =
1

2π

∫ ∞

−∞
e−i·t·w · φDLN(t)dt (OA.8)

Unfortunately, the log-Normal does not admit an analytical CF, and using Equation OA.8

requires a numerical approximation for φLN(t) as well. Gubner (2006) provides a fast and

accurate approximation method for the CF of the log-Normal which I use in the calculation

of fDLN(w) when using this method.

OA.2 Moments

OA.2.1 MGF

The moment generating function (MGF) of the DLN can be written as

MW (t) = E
[
etW
]
=

∫ ∞

−∞

∫ ∞

−∞
etwfBV LN(y + w, y)dydw (OA.9)

but this formulation has limited usability due to the lack of closed-form solution for the

integrals. Instead, it is useful to characterize the moments directly, as we can obtain them

in closed-form.
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OA.2.2 Mean and variance

Using the definitions of µ and Σ for the Bi-Variate Normal, define the mean and covariance

of the Bi-Variate Log-Normal RV, µ̂ and Σ̂ (element-wise) as

µ̂(i) = exp

(
µ(i) +

1

2
Σ(i,i)

)
Σ̂(i,j) = exp

(
µ(i) + µ(j) +

1

2

(
Σ(i,i) + Σ(j,j)

))
·
(
exp

(
Σ(i,j)

)
− 1
) (OA.10)

Note that if Σ is diagonal (i.e., Xp and Xn are uncorrelated) then Σ̂ will be diagonal as

well. We are however interested in the general form of the DLN distribution. The identities

regarding the expectation and variance of a sum of RV yield

E [W ] = E [Yp]− E [Yn] = µ̂(1) − µ̂(2) = exp(µp +
σ2
p

2
)− exp(µn +

σ2
n

2
) (OA.11)

and

Var [W ] = C [Yp, Yp] + C [Yn, Yn]− 2 · C [Yp, Yn] = Σ̂(1,1) + Σ̂(2,2) − 2 · Σ̂(1,2)

= exp
(
2µp + σ2

p

)
·
(
exp

(
σ2
p

)
− 1
)
+ exp

(
2µn + σ2

n

)
·
(
exp

(
σ2
n

)
− 1
)

− 2exp

(
µp + µn +

1

2
(σ2

p + σ2
n)

)
· (exp (σpσnρpn)− 1)

(OA.12)

with C the covariance operator of two general RV U1, U2

C [U1, U2] = E [(U1 − µ1)(U2 − µ2)] (OA.13)

OA.2.3 Skewness and kurtosis

Skewness and kurtosis of the DLN can similarly be established using coskewness and

cokurtosis — see e.g. Miller (2013) for an overview. Coskewness of three general RV
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U1, U2, U3 is defined as

S [U1, U2, U3] =
E [(U1 − µ1)(U2 − µ2)(U3 − µ3)]

σ1σ2σ3

(OA.14)

and cokurtosis of four general RV U1, U2, U3, U4 is defined as

K [U1, U2, U3, U4] =
E [(U1 − µ1)(U2 − µ2)(U3 − µ3)(U4 − µ4)]

σ1σ2σ3σ4

(OA.15)

with the property that S [U,U, U ] = Skew [U ] and K [U,U, U, U ] = Kurt [U ]. More impor-

tantly, it is simple to show that

Skew [U − V ] =
σ3
US [U,U, U ]− 3σ2

UσV S [U,U, V ] + 3σUσ
2
V S [U, V, V ]− σ3

V S [V, V, V ]

σ3
U−V

(OA.16)

and similarly

Kurt [U − V ] =
1

σ4
U−V

[σ4
UK [U,U, U, U ]− 4σ3

UσVK [U,U, U, V ]

+ 6σ2
Uσ

2
VK [U,U, V, V ]− 4σUσ

3
VK [U, V, V, V ] + σ4

VK [V, V, V, V ]]

(OA.17)

with σU−V = Var [U − V ]
1
2 calculated using Equation OA.12. Evaluating the operators S

and K for the case of DLN requires evaluating expressions of the general form E
[
Y i
pY

j
n

]
,

which can be done via the MGF of the BVN distribution

E
[
Y i
pY

j
n

]
= E

[
eiXpejXn

]
= MGFBV N

([
i
j

])
= E

[
Y i
p

]
E
[
Y j
n

]
eijΣ(1,2) (OA.18)

with E
[
Y i
p

]
= exp

(
iµp +

1
2
i2σ2

p

)
. This concludes the technical details of the derivation.

The method presented can be extended to higher central moments as well. The accom-

panying code suite includes functions that implement the equations above and use them to

calculate the first five moments of the DLN given the parameters (µp, σp, µn, σn, ρpn).

56



OA.3 Estimation

Given data D ∼ DLN(Θ) with Θ = (µp, σp, µn, σn, ρpn), we would like to find an estimate

Θ̂ to the parameter vector Θ. Experiments show that given an appropriate initial guess, the

MLE estimates of Θ perform well in practice. The main parameter of difficulty is ρpn. This

parameter is akin to the shape parameter in the Stable distribution, which plays a similar

role and is similarly difficult to estimate, see e.g. Fama and Roll (1971). It hence requires

special care in the estimation.

The estimation code provided minimizes the negative log-likelihood of the data w.r.t the

DLN PDF using a multi-start algorithm. The starting values for the first four parameters

are fixed for all start points as:



µp

σp

µn

σn


=



Median [log (D)] for D > 0

IQR [log (D)] /1.35 for D > 0

Median [log (−D)] for D < 0

IQR [log (−D)] /1.35 for D < 0


(OA.19)

while the initial guesses for ρpn are (−0.8,−0.3, 0, 0.3, 0.8). The estimator Θ̂ is then the value

which minimizes the negative log-likelihood in the multi-start algorithm. The estimator

inherits asymptotic normality, consistency, and efficiency properties from the general M-

estimator theory, as the dimension of Θ̂ is fixed, the likelihood is smooth, and is supported

on R ∀Θ̂. A better estimation procedure for the parameters of the DLN might be merited,

but is left for future work.

OA.4 The elliptical multi-variate DLN

Some practical applications of the DLN require the ability to work with multi-variate

DLN RVs. I hence present an extension of the DLN to the multi-variate case using elliptical

distribution theory, with the standard reference being Fang, Kotz, and Ng (1990).
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The method of elliptical distributions requires a symmetric baseline distribution. We

will therefore focus our attention on the symmetric DLN case in which µp = µn ≡ µ

and σp = σn ≡ σ, yielding the three parameter uni-variate symmetric distribution

SymDLN(µ, σ, ρ) = DLN(µ, σ, µ, σ, ρ). I begin by defining a standardized N-dimensional

elliptical DLN RV using SymDLN and the spherical decomposition of Cambanis, Huang,

and Simons (1981), and later extend it to a location-scale family of distributions.

Let U be an N-dimensional RV distributed uniformly on the unit hyper-sphere in RN

and arranged as a column vector. Let R ≥ 0 be a univariate RV independent of U with

PDF fR (r) to be derived momentarily, and let Z = R · U be a standardized N-dimensional

elliptical DLN RV. A common choice for U is Û/||Û ||2 with Û ∼ MVN(0N , 1N). U captures

a direction in RN , and we have
√
UT · U = ||U ||2 ≡ 1, which implies

√
ZT · Z = ||Z||2 = R.

We further know that the surface area of an N-sphere with radius R is given by

SN (R) =
2 · πN

2

Γ
(
N
2

) ·RN−1 (OA.20)

and can hence write the PDF of Z as

fZ (z) =
fR (||z||2)
SN (||z||2)

=
Γ
(
N
2

)
· fR (||z||2)

2 · πN
2 · ||z||N−1

2

(OA.21)

We require fR (r) and fZ (z) to be valid PDFs, which yields the conditions

fR (r) ≥ 0 ∀ r ∈ R

fZ (z) ≥ 0 ∀ z ∈ RN∫ ∞

−∞
fR (r) dr = 1∫ ∞

−∞
· · ·
∫ ∞

−∞
fZ (z) dz(N) · · · dz(1) = 1

(OA.22)

to those, we can add the condition that the properly normalized distribution of fR (r) will
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be SymDLN,

fR (r) = M̃N (r) · fDLN(r) (OA.23)

with M̃N (r) chosen such that the conditions in Equation OA.22 hold. Solving for this set of

conditions yields

fR (r) =
rN−1∫∞

0
r̃N−1 · fDLN (r̃) dr̃

· fDLN (r) (OA.24)

and

fZ (z) =
Γ
(
N
2

)
2 · πN

2 ·
∫∞
0

r̃N−1 · fDLN (r̃) dr̃
· fDLN (||z||2) = MN · fDLN (||z||2) (OA.25)

with MN a normalization constant depending only on the dimension N and the parameters

of the baseline SymDLN (µ, σ, ρ) being used. We can use Z’s CDF definition to write

FZ (z) =

∫ z(1)

−∞
· · ·
∫ z(N)

−∞
fZ (ẑ) dẑ(N) · · · dẑ(1)

=

∫ z(1)

−∞
· · ·
∫ z(N)

−∞
MN · fDLN (||z||2) dẑ(N) · · · dẑ(1)

(OA.26)

which concludes the characterization of the standardized N-dimensional elliptical DLN RV.

Extending the standardized N-dimensional DLN to a location-scale family of distribu-

tions is now straightforward. Let µ̃ = (µ1, µ2, ..., µN)
T be a column vector of locations and

let Σ̃ be a positive-semidefinite scaling matrix of rank N . Define

W = µ̃+ Σ̃
1
2 · Z (OA.27)

with Σ̃
1
2 denoting the eigendecomposition of Σ̃. The PDF of W is then given by

fW (w) = |Σ̃|−
1
2 · fZ

(
Σ̃− 1

2 · (w − µ̃)
)

= |Σ̃|−
1
2 ·MN · fDLN

(√
(w − µ̃)T · Σ̃−1 · (w − µ̃)

)
= |Σ̃|−

1
2 ·MN · fDLN

(
||w − µ̃||Σ̃

)
(OA.28)
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The CDF of W can similarly be written as

FW (w) = |Σ̃|−
1
2 ·MN ·

∫ w(1)

−∞
· · ·
∫ w(N)

−∞
fDLN

(
||w − µ̃||Σ̃

)
dŵ(N) · · · dŵ(1) (OA.29)

which characterizes a general elliptical multi-variate DLN RV.

Finally, note that the scaling matrix Σ̃ is not the covariance matrix of W due to the

heavy-tails of W , similar to other heavy-tailed elliptical distributions such as the multi-

variate Stable, t, or Laplace distributions. Further note that the normalization integral in

Equation OA.24 is numerically unstable for high values of N (e.g., N ≥ 5), and care should

be taken when deriving the PDF of high-dimensional DLN RVs in practice.
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