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Abstract
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“There are only two ways to make money: increase sales and decrease costs”

— Fred DeLuca, founder of Subway

1 Introduction

We have known that the statistical distribution of firm growth is heavy-tailed since at least

the work of Ashton (1926), who documents this for the growth of British textile businesses

in the period 1884− 1924. Most firms experience moderate growth rates, with about half of

firms experiencing a yearly capital growth rate in the ±10% range. But some firms grow (or

shrink) in large jumps. About 1.5% of firms more than double in size in a single year. These

extreme “winners” and “losers” are far more numerous and economically consequential than

a Normally distributed growth rate would predict. Yet we lack a first-principles explanation

for the emergence of heavy-tailed firm growth or a clear statistical representation of its

distribution.

I show that a simple and intuitive modification to an otherwise standard q-theory model

of the firm — separately accounting for sales and expenses rather than modelling income

directly — is sufficient to yield heavy-tailed firm behavior, without appealing to time-varying

volatility or factors external to the firm. Moreover, the economic model makes a specific

prediction on the shape of several firm outcomes, predicting they should distribute as the

difference-of-log-Normals.1 This prediction is overwhelmingly supported by the data. The

obscure difference-of-log-Normals distribution exhibits a remarkable fit to a plethora of firm

outcomes, such as income, income growth, average product of capital, capital growth, and

equity returns, as the model predicts. The fit with equity returns holds for daily, monthly,

yearly, raw, and excess returns in a set of robustness tests.

The core mechanism at play is the impact of two opposing exponential forces, sales and

expenses. Consider for example a firm with $100 in sales and $90 in expenses during year 1,

1Parham (2023) describes the emergence of the difference-of-log-Normals distribution in general economic
data and fully characterizes it, deriving its PDF, CDF, central moments, and estimators for the distribution
parameters given data.
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yielding an income of 100 − 90 = 10 dollars. What will be the growth rate of income from

year 1 to year 2 if: (i) both sales and expenses increase by 10%? (ii) sales increase by 10%

but expenses decrease by 10%? (iii) sales decrease by 10% but expenses increase by 10%?

Case (i) is fairly simple, and yields income of 110 − 99 = 11 dollars in period 2, or 10%

higher income than in period 1. In case (ii), income is 110− 81 = 29 dollars, or 190% higher

than in period 1. With such a large increase in income, one would expect e.g. firm value to

increase significantly as well. This “operational leverage” effect is shown to be at the heart

of the firm’s heavy-tailed growth.2

Case (iii) is more interesting still. This is because firm income in period 2 is 90−99 = −9

dollars, or a loss of $9. Growth to (and from) negative values has hitherto been poorly

defined, but is a necessary tool when discussing income growth, because of the occurrence

of negative income values (i.e. losses) in the data. I consider below extensions to growth

measures in the presence of negative values, and show why it is sensible to say that firm

income in this case is 190% lower than in period 1. I further show how to extend log-point

growth measures, overcoming the fact the log of negative values is a complex number.

Understanding the income generating process of firms is key to explaining corporate

policies, asset pricing puzzles, and the distribution of firm outcomes, both across firms

and time. The approach proposed here to modelling firm losses extends the models of e.g.

Abel and Eberly (1994), Abel and Eberly (1996) and resolves the critique of Gorbenko

and Strebulaev (2010); Strebulaev and Whited (2012) regarding the “highly unrealistic”

lack of losses in dynamic firm models. I show that the production function implied by

separately modeling sales and expenses — a difference-of-log-linears production function,

itself a generalization of the log-linear (or Cobb-Douglas) production function — has several

desirable properties beneficial for dynamic models of corporate finance. Specifically, it gives

rise to extended and internally consistent definitions for common concepts such as firm

2Previous work (e.g. Carlson, Fisher, and Giammarino (2004), Sagi and Seasholes (2007), and especially
Novy-Marx (2011, 2013)) related operating leverage to specific factor returns, such as value, momentum,
and profitability. Here I instead establish a relation with the unconditional distribution of firm growth and
of equity returns in the context of a simple q-theory model.
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income scale, efficiency, growth, and returns-to-scale. In that, the paper follows in the

tradition of, e.g., Epstein and Zin (1991); Campbell and Cochrane (1999) and Bansal and

Yaron (2004).

Much of the interest in the distribution of firm growth in the economic literature stems

from the fact equity returns are themselves just another measure of firm growth. The heavy

tails of growth and returns were studied by Mandelbrot (1960, 1961) and Fama (1963, 1965)

who proposed the family of Stable distributions (also known as Stable-Paretian or Pareto-

Lévy) as a statistical model of firm growth. This distribution was later rejected by Officer

(1972), who concludes that “It may be that a class of fat-tailed distributions with finite

second moments will be found [...] but as yet this remains to be clearly demonstrated.”

The shape of the return distribution is crucial for the coherence of modern portfolio theory

(because the Stable distribution lacks finite second moments — our ubiquitous measure of

risk), for the predictions and accuracy of option pricing models, and for the fit of production-

based asset-pricing models to the data. The theoretically-implied difference-of-log-Normals

distribution exhibits remarkable fit to the data and has finite moments of all orders.

My approach is by no means a first attempt at explaining the distribution of firm growth

or its underlying mechanics. Gibrat (1931) introduces the log-Normal as the dominant distri-

bution in measuring firm size, based on a simple argument, later named “the multiplicative

Central Limit Theorem” (CLT). This prediction was confirmed for firms, cities, and other

proportionally-growing entities. Gibrat, however, used the CLT to reason that firm growth

should be Normally distributed and homoscedastic in scale — two predictions that have later

been shown to fail in the data. Notable theoretical models include Simon and Bonini (1958);

Lucas (1978); Klette and Kortum (2004) and the more recent works of Bottazzi and Secchi

(2006); Buldyrev, Growiec, Pammolli, Riccaboni, and Stanley (2007); Luttmer (2011). The

early works counter-factually yield firms with Normal growth, while the latter works aim to

replicate heavy-tailed growth but fail to fit the observed data distributions. The latter works

further posit an economy with a scarcity of opportunities, in which heavy-tailed growth stems
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from factors external to the firm. The model presented here, in contrast, exhibits remarkable

fit and is a simple, intuitive, and straightforward extension of the workhorse q-theory model,

lacking any such external assumptions.

The paper proceeds as follows: Section 2 presents q-theory models of firm dynamics us-

ing the traditional log-linear and the extended difference-of-log-linears production functions.

Section 3 analyzes the theoretical implications of the models and confronts these implica-

tions with the data. The section analyzes implications for (i) scale; (ii) income; (ii) income

efficiency (iii) income growth; (iv) returns-to-scale; and (v) firm growth. Section 4 presents

a structural estimation and simulation of the models. The q-theory model with the new

production function replicates the empirical firm data qualitatively (i.e., in distributional

form) as well as quantitatively (i.e., the moments of said distributions). I provide concluding

remarks in Section 5.

2 Model

Since the early works of Lucas (1967), Tobin (1969), Uzawa (1969), and especially the

seminal work of Hayashi (1982), q-theory has become the canonical workhorse of firm mod-

eling in the corporate finance literature.3 The neo-classical q-theory model posits a value-

maximizing firm facing a dynamic investment-dividend decision subject to adjustment costs.

The value-maximizing firm invests up to the point where the marginal benefit of investment

equals the marginal cost of investment, both then denoted marginal-q. The next subsection

presents a general version of the q-theory model that includes entry and exit but abstracts

from the specific forms of the: (i) investment function; (ii) production function; (iii) stochas-

tic dynamics; and (iv) entry and exit mechanics. The following subsections expand on these

facets by presenting and discussing the relevant functional and stochastic forms. The only

3Examples include: Hennessy and Whited (2005), Hennessy and Whited (2007), Liu, Whited, and Zhang
(2009), Livdan, Sapriza, and Zhang (2009), Riddick and Whited (2009), Bolton, Chen, and Wang (2011),
DeAngelo, DeAngelo, and Whited (2011), Lin (2012), Belo, Lin, and Bazdresch (2014), Nikolov and Whited
(2014), Li, Whited, and Wu (2016), Belo, Li, Lin, and Zhao (2017), Michaels, Page, and Whited (2019), Sun
and Xiaolan (2019), Falato, Kadyrzhanova, Sim, and Steri (2021).
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deviations from the standard q-theory literature are concerning the production function and

its derived stochastic dynamics.

2.1 The general q-theory model

At the beginning of every period, a representative value-maximizing firm observes its

endogenous capital stock for the period Kt > 0 and exogenous (i.e., stochastic) productivity

Zt > 0.4 The firm first chooses whether to remain for another period (denoted αt = 1)

or exit (αt = 0). Firm owners receive some non-negative payoff Vexit (Kt, Zt) ≥ 0 upon

exit. A remaining firm then chooses an investment level It = I (Kt+1, Kt) for the period, or

equivalently an end-of-period capital level Kt+1, with negative investment values implying

the proceeds from capital sale. The function I () embeds any assumptions on depreciation,

fixed and convex adjustment costs, irreversibility, etc. The firm produces income (sales net

of all expenses and taxes) Yt = Y (Kt, Zt), and dispenses Dt = D (Kt+1, Kt, Zt) = Yt − It to

owners. All payoffs accrue at the beginning of the period for simplicity.

The value of the firm Vt = V (Kt, Zt) is the expected present value of all dispensations.

This value is recursively defined by the Bellman equation

Vt = max
Kt+1,αt

{
(1− αt) ·Vexit (Kt, Zt) + αt · (D (Kt+1, Kt, Zt) + β · Et [V (Kt+1, Zt+1)])

}
(1)

with 0 < β < 1 the time discount parameter, such that β = (1 + r)−1, and r > 0 is the cost

of capital for the firm.

The investment decision of a remaining firm can be characterized by equating the benefit

and cost of a marginal unit of investment. This implies choosing Kt+1 such that

β · Et [V′1 (Kt+1, Zt+1)] = −D′1 (Kt+1, Kt, Zt) = I′1 (Kt+1, Kt) (2)

where X′j() indicates the derivative of the function X() w.r.t its jth argument. The R.H.S

4Both K and Z may be vectors in the general case.
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of Equation 2 is the marginal cost today of one extra unit of next period capital, and the

L.H.S the discounted expected marginal benefit of the extra unit. The value of both is the

marginal-q of the firm at period t.5

Denote the investment policy function of a remaining firm prescribed by Equation 2 to

be Kt+1 = Ψt = Ψ(Kt, Zt).
6 It is useful to define the exit (or bankruptcy) indicator of the

firm in period t,

Bt = B (Kt, Zt) = D (Ψt, Kt, Zt) + β · Et [V (Ψt, Zt+1)]−Vexit (Kt, Zt) (3)

as the difference between the optimal values conditional on remaining and exiting. The

firm’s exit policy is to remain when it is above the exit threshold (i.e. has a non-negative

exit indicator Bt ≥ 0) and exit otherwise.

We can now combine Equation 2 with the envelope condition to write the remaining

firm’s full first-order condition (f.o.c) for capital as

β ·Et
[
(1− αt+1) ·Vexit′

1 (Ψt, Zt+1) + αt+1 · (Y′1 (Ψt, Zt+1)− I′2 (Ψt+1,Ψt))
]

= I′1 (Ψt, Kt) (4)

which in turn characterizes the function Ψ (Kt, Zt). The equation equates the cost of a

marginal unit of extra capital with the discounted marginal benefits from higher exit value,

higher production, and lower future investment costs.

Finally, it is useful to define the function Φ(Zt) to be the fixed point of the function

Ψ (Kt, Zt) in the first input, such that Φt = Φ(Zt) = Ψ(Φ(Zt), Zt). I.e., Φt is the steady-

state capital level corresponding to Zt. As usual, the functions cannot be specified in closed

form and require numerical evaluation.

5If the function I () contains fixed costs of investment, then an inactivity region may arise as in Abel and
Eberly (1994). I ignore this possibility below for ease of exposition, but the model can be easily extended to
include such an assumption.

6That the function Ψ() exists under mild conditions on the functions Y(), I(), and Vexit (Kt, Zt) is a
standard result. See e.g. Stokey, Lucas, and Prescott (1989).
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2.2 Investment function

The investment function I (Kt+1, Kt) determines the investment level required to move

from current capital level Kt to next-period capital level Kt+1. It embeds assumptions

on capital adjustment costs and depreciation. Throughout, I will be using the standard

investment function common to the literature cited above, often written as

Iquad (Kt+1, Kt) = (Kt+1 −Kt) + γ ·
(
Kt+1

Kt

− 1

)2

·Kt + δ ·Kt (5)

with γ ≥ 0 an adjustment parameter and 0 ≤ δ ≤ 1 the capital depreciation rate. It

includes: (i) the cost of capital goods for a price-taking firm; (ii) a symmetric quadratic

capital adjustment cost; and (iii) a constant rate of capital depreciation. I use this function,

and especially the adjustment cost functional form, for simplicity and to demonstrate that

the results do not depend on complex adjustment dynamics including limited reversibility,

inaction regions, etc.

Note that when γ → 0, Iquad simplifies to the perpetual inventory formula with no

adjustment costs

Itriv (Kt+1, Kt) = (Kt+1 −Kt) + δ ·Kt = Kt+1 − (1− δ) ·Kt (6)

and the firm’s f.o.c from Equation 4 simplifies to the well-known equality between the ex-

pected marginal product of capital and the user cost of capital, adjusted for exit

Et
[
(1− αt+1) ·Vexit′

1 (Kt+1, Zt+1) + αt+1 ·Y′1 (Kt+1, Zt+1)
]

= r + δ (7)

Furthermore, without adjustment costs, the firm immediately adjusts to the optimal capital

level Φ(Zt) every period, such that Φ(Zt) = Ψ(Kt, Zt) ∀Kt, and marginal-q ≡ 1. In this

simplified case that is nevertheless useful as a benchmark, the policy function of the firm

can often be expressed analytically, without requiring value- or policy-function iterations.
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2.3 Production function: Z-model

The canonical production function in the q-theory literature is a log-linear (LL, e.g.

Cobb-Douglas) production function. I present and discuss it in this section before discussing

its extension, the difference-of-log-linears production function that captures the interplay of

sales and expenses, in the next section.

The canonical production function models firm income as

Yz (Kt, Zt) = (1− τz) · Zt ·Kθz
t = (1− τz) · exp (zt + θz · kt) (8)

with returns to scale parameter 0 < θz < 1, expense parameter 0 ≤ τz < 1, and with

lower-case variables denoting log values as usual. The stochastic productivity process Z is

assumed to follow the canonical AR(1) in logs, with Normal innovations. I.e. z = log(Z)

follows

zt+1 = (1− ρz) · µz + ρz · zt + εzt+1 (9)

with persistence 0 < ρz < 1 and mean µz. The i.i.d innovations follow

εz ∼ N(0, σ2
z) (10)

with σz > 0 the standard deviation of εz. Models following this production function are

denoted Z-models.

The q-theory models generally abstract from labor. Wages, materials, and other expenses

are already accounted for, as Yz (Kt, Zt) models net income, i.e., sales minus expenses (in-

cluding taxes). The expense parameter τz can be interpreted in different ways, depending on

the relevant model calibration. Some models calibrate it to a fixed corporate tax rate and

calibrate the remaining term Zt ·Kθz
t to match firm EBIT. Others drop it altogether (i.e. set

τz = 0), and calibrate the remaining term Zt ·Kθz
t to match firm net income. Alternatively,

it can be set to a fixed expense ratio (e.g., the average ratio of firm expenses to firm sales in
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the data) and the remaining term Zt ·Kθz
t then calibrated to match firm sales.

The main challenge with the first two interpretations of τz, and accordingly the two com-

mon calibrations of the Zt ·Kθz
t term, is that while this term is non-negative by construction,

neither EBIT nor net income are. Negative incomes (i.e., losses) are prevalent, and impact

firm policies and behaviors in a variety of ways, not captured by Z-models. The third in-

terpretation matches the non-negative term to firm sales, which are indeed a non-negative

value. In doing so, however, the calibration ignores the entire cost structure of the firm,

focusing only on the dynamics of firm sales. I return to this challenge shortly.

Before proceeding, it is worth contemplating the economic meaning of the exogenous

productivity process Z. One way of framing Z is as the Solow residual, after the contribution

of capital has been factored-out of firm income. As such, it is often thought of as the

“productivity” of the firm (w.r.t capital). What determines this productivity? It is a function

of the “skill, dexterity, and judgment with which labor is applied,” as in Smith (1776), or

of the firm’s production technology, cost structure, managerial talent, market power, and

a host of other components, including luck. In that sense, Z is partly endogenous. Of

course, all firms would prefer to produce as much income as possible from a given amount of

capital K. Put differently, all firms would like to have as high a Z as possible. Firms hence

optimize the components of Z under their control, and as a result, achieve (log) productivity

µZ on average. But firms differ in their ability to achieve a high Z, and the differences are

persistent. Zt hence represents the current productivity of the representative firm, given its

optimizing behavior on the components of Z.

2.4 Production function: SX-model

Reconsider now the interpretation of the income function Yz in which τz is a fixed expense

ratio, and Zt ·Kθz
t is calibrated to match firm sales. We can write firm income in the model
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as:

Yt =

(
1− Expenses

Sales

)
· Salest = Salest −

Expenses

Sales
· Salest ≈ Salest − Expensest = Incomet

(11)

with τz explicitly spelled out as average expenses over sales. This decomposition highlights

the economic definition of income — the difference between sales and expenses — possibly

the most fundamental of accounting identities. It further demonstrates the difficulty of

“single-factor” Z-models to capture the interplay of sales and expenses.

To capture this interplay of sales and expenses, I instead propose to model each one

directly as both are observable in the data. Specifically, I use the following difference-of-log-

linears production function,

Ysx (Kt, St, Xt) = St ·Kθs
t︸ ︷︷ ︸

Sales≡St

− Xt ·Kθx
t︸ ︷︷ ︸

Expenses≡Xt

= exp (st + θs · kt)− exp (xt + θx · kt) (12)

with 0 < θx, θs < 1 returns to scale parameters in sales and expenses, respectively. In a

slight abuse of notation, firm sales during period t are denoted St and firm expenses Xt. The

function Ysx() is now a function of three variables — the capital stock Kt and two stochastic

exogenous variables, St and Xt, controlling the dynamics of sales and expenses.

The S,X process is assumed to follow a joint-AR(1) in logs. I.e., s = log(S) and x =

log(X) follow

st+1 = (1− ρs) · µs + ρs · st + εst+1

xt+1 = (1− ρx) · µx + ρx · xt + εxt+1

(13)

with persistence 0 < ρs, ρx < 1 and mean µs, µx. The i.i.d innovations follow the bi-variate
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Normal εst+1

εxt+1

 ∼ N


0

0

 ,
 σ2

s σsx

σsx σ2
x


 (14)

with σsx = ρsx · σs · σx for σs, σx > 0 and −1 < ρsx < 1. Models following this production

function are denoted SX-models.

While the Z-model appears to be significantly more parsimonious than the SX-model, I

show in Section 4 that all dynamic parameters in both the Z- and SX-models are strongly

pinned-down by the data. In effect, the only meaningful increase in degrees-of-freedom is

the move from one returns-to-scale parameter (θz) to two (θs, θx).

Let us again contemplate the economic meaning of S,X. Clearly, all firms would prefer

S → ∞ and X → 0. On average, however, the representative firm achieves sales (log)

productivity µs and expenses (log un)productivity µx, after taking all profitable moves to

jointly optimize both S and X.7

A difficulty with this modelling approach is the fact that, strictly speaking, capital does

not “cause” expenses, as most firm expenses are in fact payments to labor and materials.

One possible interpretation is that X merely tracks the projection (i.e. solow residual) of

total expenses on firm capital, here used as an index of firm size. This approach has the

benefit of being simple and intuitive. Another approach is to model such inputs directly. As

an example, consider the following production function which tracks labor as well as capital,

assuming labor, like capital, is quasi-fixed:

Y (Kt, Lt, St, Xt) = St ·K
θs,k
t · Lθs,lt −Xt ·K

θx,k
t · Lθx,lt

= exp (st + θs,k · kt + θs,l · lt)− exp (xt + θx,k · kt + θx,l · lt)
(15)

7Note that εs, εx are likely correlated. Consider e.g. a firm encountering a positive demand shock, and
finding it profitable to increase sales by working a third shift in its factory to supply the newfound demand.
The firm can increase S (the sales productivity of a unit of capital — here, the factory), but to do so, it
will also need to increase X due to extra payments to labor for working a third shift and various other extra
expenses. Hence, it is likely ρsx > 0.
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In such a production function one may, e.g., set θx,k → 0, θx,l → 1 and use Xt > 0 to track

the wage rate in the economy, yielding wt · Lt.8

As in Abel and Eberly (1998), the wage rate (or more generally the price of inputs) is

stochastic. This is because the model implicitly assumes the firm makes a production plan

for period t during period t − 1. The firm then uses this plan to decide the appropriate

capital and labor levels for period t, Kt, Lt, which are decided at t − 1. The firm hence

makes the production plan based on the expected demand curve (and output price) for its

output and expected supply curves (and input prices) for its inputs, with these expectations

based on t− 1 market conditions. The actual prices it ends up facing are hence stochastic.

Adding consideration for labor does not, however, contribute much to the basic understand-

ing of the production function and its impact on firm dynamics. I hence opt for the simple

interpretation of Xt as a projection of expenses on capital, and remain within the q-theory

framework which tracks only capital.

2.5 Production function: λτ-model

An important feature of the difference-of-log-linears production function is that it can

be factored into the multiplication of an exponential function and a Hyperbolic Sine (sinh)

function — the hyperbolic equivalent of moving from Cartesian to Polar coordinates. The

Hyperbolic Sine function is defined as

sinh (x) ≡ exp(x)− exp(−x)

2
(16)

for x ∈ R.9

8The payment to capital r ·K is explicit (i.e. residual) in the model, and hence does not require accounting
in the cost function.

9Compare with the exponential definition of the “traditional” Sine function, sin (x) ≡ exp(i·x)−exp(−i·x)
2·i .
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It is simple to show that Ysx can alternatively and equivalently be written as

Ysx (Kt, St, Xt) = exp (st + θs · kt)− exp (xt + θx · kt) = 2 · exp (λt) · sinh (τt)

λt ≡
st + xt

2
+
θs + θx

2
· kt = λ̂t + θλ · kt = log(

√
Sales · Expenses)

τt ≡
st − xt

2
+
θs − θx

2
· kt = τ̂t + θτ · kt = log(

√
Sales/Expenses)

(17)

which merits discussion.

The two new variables, λt ∈ R and τt ∈ R, are the hyperbolic equivalents of the “radius”

and “angle” in Polar geometry, respectively. Both are observable given only firm sales and

expenses, and do not require knowledge of the firm’s capital stock to calculate. The variable

λt, hereafter denoted firm income scale, is the (log) geometric mean of sales and expenses

in period t. The variable τt, hereafter denoted firm income efficiency, is a transformation

of the firm’s operational efficiency ratio.10 Note that λ is the mid-point between log sales

and log expenses, and τ is the (equal) distance from λ to log sales and log expenses. The

inverse mapping is hence Salest = exp (λt + τt) and Expensest = exp (λt − τt). Clearly, the

sign of firm income depends on the sign of τ (i.e., a firm with negative τ suffers losses), and

the magnitude of firm income primarily depends on λ, with a small role for τ .

As Equation 17 demonstrates, both λt and τt can be expressed in terms of st, xt, kt — the

(log) state variables of the SX model. This allows us to consider a change-of-variables, and

define two new stochastic state variables, λ̂t and τ̂t, and two new returns-to-scale parameters,

θλ and θτ . These new stochastic variables are the Solow residuals of projecting income scale

and efficiency on capital, rather than projecting sales and expenses as in the original SX-

10Operational efficiency is defined as the ratio of outputs to inputs in a production process, or here the
ratio of sales to expenses. It is the inverse of the expense ratio from above, defined as the ratio of expenses
to sales.
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model. We can now recast the SX-model as:

Yλτ

(
kt, λ̂t, τ̂t

)
= 2 · exp

(
λ̂t + θλ · kt

)
· sinh (τ̂t + θτ · kt) (18)

with 0 < θλ < 1 and θτ ∈ R, and with the stochastic dynamics of λ̂t, τ̂t jointly-AR(1), as in

Equations 13 and 14.

The λτ formulation of the SX-model is useful for several reasons. First, it gives rise to

the (plausibly meaningful) decomposition of income using the definitions of income scale and

income (operational) efficiency described here. Second, it is considerably simpler to estimate

and simulate because it transforms the highly-correlated variables of sales and expenses to

the nearly-uncorrelated variables of scale and efficiency. Third, theoretical derivations and

mathematical analysis of model behavior are often simpler under the λτ formulation than

under the SX formulation, as I show in the model analysis conducted in Section 3.

2.6 Entry and exit

To close the Z- and SX-models, we still need to define the mechanics of entry and exit.

For exit, I use the simple assumption

Vexit (Kt, · · · ) = ν ·Kt (19)

with a capital fire-sale rate 0 < ν < 1. This implies firms can fire-sell their capital stock for

a share ν of its value and exit. To maintain a constant measure of firms when simulating

the model, a new firm is “born” every time a firm exits. The new firm’s state is drawn from

the current distribution of firm states in the simulation.
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3 Analysis of models

The SX-model of the firm makes specific novel predictions on various firm outcomes. In

this section, I review these predictions and test them in the data. I also compare these

predictions with those of the Z-model using the log-linear production function, when appro-

priate.

The data analyzed cover public US firms in the 50-year period 1970-2019, and in-

clude 165, 000 firm-year observations. Data are predominantly derived from the yearly

CRSP/Compustat data set. For some tests related to equity returns I use higher-frequency

CRSP data. All dollar amounts are normalized by yearly nominal GDP, in 2019 terms. This

removes both inflation and secular growth trend considerations. All reported results are

robust to sample-period selection, and I verify they hold when limiting the sample to any

single decade within the period.

Table 1 defines all data panels analyzed in terms of Compustat items. Each data panel

is identified throughout with a two-letter mnemonic. I mainly rely on the sources and uses

identity

sales︸︷︷︸
SL

− expenses︸ ︷︷ ︸
XS

= income︸ ︷︷ ︸
CF

= total net dividends︸ ︷︷ ︸
DI

+ total net investment︸ ︷︷ ︸
IT

(20)

to define expenses as dissipated sales (i.e., sales - income, SL-CF). This guarantees all ex-

penses, including cost of goods, selling, general, administrative, taxes, and various other

“special” and “one-time” expenses are fully accounted for. I verify all results with a tradi-

tional top-down definition as well.

The following sub-sections review model predictions and data outcomes for: (i) scale;

(ii) income; (iii) income efficiency; (iv) income growth; (v) returns-to-scale; and (vi) firm

growth.
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Table 1
Data definitions

This table defines all data items used. The first column is the name of each data item and the
second is the mnemonic used throughout. The third column is the mapping to Compustat
items or previously defined mnemonics, and the fourth is a short description. The core
accounting identity used is the sources and uses equation: income = sales - expenses = total
dividends + total investment, with dividends broadly defined below. The last two data items
are alternative definitions used for comparability with previous work. The “L.” is the lag
operator.

Name XX Definition Description

Equity value EQ mve market value, year end
Debt value DB lt book total liabilities
Total value VL EQ + DB equity + debt
Equity dividends DE dvt + (prstkc - sstk) dividends + net repurchase
Debt dividends DD xint + (L.DB-DB) interest paid + decrease in debt
Total dividends DI DE + DD to equity and debt
Total capital KT at total assets (tangible)
Depreciation DP dp of tangible capital
Total investment IT KT - L.KT + DP growth in net assets
Income CF DI + IT bottom-up free cash flows
Sales SL sl total sales
Expenses XS SL - CF dissipated sales
Expenses (alt.) XA cogs + xsga + txt top-down definition
Income (alt.) CA SL - XA top-down definition
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3.1 Scale

The firm size distribution has seen such intense research interest it has its own JEL

classification: L11. Three common measures of firm size in the literature are total capital

KT, equity value EQ, and total sales SL. To those, I add total expenses XS and total value

VL. Because much of total expenses is payment to labor, XS is a noisy proxy of employee

count, another common firm size measure. All those measures are non-negative and are often

considered in logs. To prevent confusion, I will refer to the logged versions as “scales”, e.g.

kt = log(Kt) is the firm’s capital scale in period t. Finally, I consider firm income scale λ,

as defined by Equation 17, along with the previous five firm scale measures.

A survey by Sutton (1997) concludes that the firm scale distribution (using various mea-

sures) is stable over time and approximately Normal. Later contributions, including Cooley

and Quadrini (2001), Cabral and Mata (2003), Desai, Gompers, and Lerner (2003) and An-

gelini and Generale (2008) concentrate on the observed mild skewness of the distributions,

and relate it to financial frictions hampering the growth of younger/smaller firms.

Panel (a) of Table 2 presents the descriptive statistics for these scale measures in the data.

Perhaps unsurprisingly, they all have similar means, s.d., skewness, and kurtosis. They are

also all highly correlated, as Panel (b) of Table 2 shows, and are in fact all co-integrated, as

Panel (c) of Table 2 reports. Two notable factoids are that all have mild positive skewness

(as discussed above) and all have kurtosis close to 3 (the kurtosis of the Normal distribution).

Empirical histograms of several of the scale measures are presented in Figure 1. They all

indeed appear approximately Normal, with slight skewness. Each is overlaid with a fitted

skew-Normal distribution yielding good visual fit.11 The fit is further evident when viewing

the accompanying quantile-quantile (q-q) plots in the figure.12

Formal statistical tests of each of the six scale measures versus the Normal and skew-

11The skew-Normal distribution is a 3-parameter distribution SN(µ, σ2, α) with α ∈ R a skewness param-
eter and SN(µ, σ2, 0) ∼ N(µ, σ2).

12A q-q plot presents the theoretical quantiles of a given distribution vs. the empirical quantiles in the
observed data. When the quantiles match (i.e., the theoretical and empirical CDFs are identical), all points
lie on the 45-degree line in the q-q plot.
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Table 2
Scale - Descriptive statistics

Panel (a) presents the first four central moments of the firm scale measures (λ and the logs
of capital, firm value, equity value, sales, and expenses). Variable definitions are in Table 1.
Panel (b) presents the correlations between the various scale measures. Panel (c) presents
the results of three cointegration tests between the scale measures, with the first two tests
from Pedroni (2004), and the third from Westerlund (2005). The first two test the null of
no cointegration vs. the alternative that all panels are cointegrated while the third tests the
null vs. the alternative that some panels are cointegrated. Tests are conducted by decade,
on the available balanced sample of firms within each decade.

Panel (a): Scale moments

λ KT VL EQ SL XS

M1 (mean) 6.33 6.65 6.98 6.19 6.36 6.30
M2 (s.d.) 2.08 2.11 2.12 2.16 2.13 2.05
M3 (skew) 0.19 0.36 0.34 0.27 0.09 0.23
M4 (kurt) 2.76 2.99 2.91 2.75 2.86 2.78

Panel (b): Scale correlations

λ KT VL EQ SL XS

λ — .929 .880 .797 .995 .995
KT .929 — .961 .883 .928 .921
VL .880 .961 — .960 .878 .874
EQ .797 .883 .960 — .796 .792
SL .995 .928 .878 .796 — .982
XS .995 .921 .874 .792 .982 —

Panel (c): Scale cointegration tests

Phillips-Perron t p-val Dicky-Fuller t p-val Variance ratio p-val
70’s 51.12 <0.001 -65.76 <0.001 17.42 <0.001
80’s 57.38 <0.001 -57.41 <0.001 21.32 <0.001
90’s 58.97 <0.001 -65.87 <0.001 22.05 <0.001
00’s 62.51 <0.001 -75.13 <0.001 21.67 <0.001
10’s 58.97 <0.001 -60.87 <0.001 22.57 <0.001
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Fig. 1. Firm scale distributions. Panel (a) presents the histogram of capital scale (log total
assets), overlaid with an MLE-fitted Skew-Normal distribution, for a set of 143K firm-year
observations from 1970-2019. Panel (d) presents the respective q-q plot. Panels (b) and (c)
present equity scale (log market value of equity) and income scale (λ = log geometric average
of sales and expenses), respectively, with MLE-fitted Skew-Normal distributions. Panels (e)
and (f) present the respective q-q plots.
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Normal distributions are presented in Table 3. The three goodness-of-fit distributional tests

I use are the Kolmogorov-Smirnov (K-S), the Chi-square (C-2), and the Anderson-Darling

(A-D) tests. The three tests are sensitive to different distributional deviations — K-S has

uniform power throughout, C-2 is more powerful around the center-mass, and A-D is more

powerful around the tails — hence I report results of all three tests. Panel (a) shows that

Normality is generally rejected across the board (at the 5% significance level). In contrast,

Skew-Normality is not rejected for any scale measure by either test, as seen in Panel (b) of

Table 3.

The better fit of the skew-Normal distribution might not be too surprising, given that

it has an extra degree of freedom (i.e., an extra parameter). To account for the degrees of

freedom, I use the relative likelihood test, derived from the AIC statistic of Akaike (1973).

The relative likelihood is a non-nested version of the likelihood ratio test, accounting for the

number of parameters.13 I also report relative likelihood tests using the BIC statistic, which

penalizes extra degrees of freedom more heavily. Panel (c) presents the relative likelihood

tests of the Normal and the skew-Normal, showing that the skew-Normal is overwhelmingly

favored even after penalizing for the extra parameter. These results imply the distribution of

firm size is not rejected as being log-skew-Normal in the data, for any of the six size measures

considered. Notably, this fit is also excellent at the upper tail of the size distribution, i.e., for

the largest firms. Because the model presented above lacks financial frictions, I will generally

ignore the mild skewness in what follows.

Consider now the predictions of the Z-model. The driving process of the model is the

productivity process Zt, which follows AR(1) in logs. Due to the Central Limit Theorem

(CLT) and as a general property of AR(1) processes, the ergodic distribution of z is Normal

and of Z is hence log-Normal. Being the only stochastic driving force in the model, we

can expect this normality to be inherited by the observable measures of firm scale. Because

firm capital Kt is a choice (and hence outcome) variable of the model, ascertaining its

13For a review of the information-theoretic approach to model selection see, e.g., Burnham and Anderson
(2002).
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Table 3
Distributional tests

This table presents the results of tests of distributional form for the six scale measures of
Table 2. K-S is a Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D is
an Anderson-Darling test. Panels (a) and (b) report the test statistics and their p-values
rejecting the relevant distribution for the Normal and Skew-Normal, respectively. Panel (c)
reports the relative likelihoods for each distribution using the AIC and BIC.

λ KT VL EQ SL XS

Panel (a): Normal

K-S 0.018 0.024 0.026 0.029 0.010 0.022
p-val 0.039 0.030 0.029 0.025 0.059 0.033
C-2 104.8 189.1 199.8 191.1 46.98 160.5
p-val 0.037 0.028 0.027 0.027 0.054 0.030
A-D 7.819 16.06 16.91 17.18 2.886 11.92
p-val 0.036 0.027 0.027 0.026 0.052 0.031

Panel (b): Skew-Normal

K-S 0.010 0.009 0.008 0.011 0.006 0.010
p-val 0.060 0.061 0.066 0.056 0.086 0.058
C-2 33.62 39.69 30.51 22.47 22.26 41.73
p-val 0.063 0.059 0.066 0.077 0.077 0.057
A-D 1.918 1.667 1.639 2.163 0.681 2.252
p-val 0.059 0.061 0.062 0.057 0.081 0.056

Panel (c): Relative likelihood tests

AIC R.L.:
N 0.000 0.000 0.000 0.000 0.000 0.000
SN 1.000 1.000 1.000 1.000 1.000 1.000

BIC R.L.:
N 0.000 0.000 0.000 0.000 0.000 0.000
SN 1.000 1.000 1.000 1.000 1.000 1.000

22



distributional form analytically in the absence of closed form solutions to the model policy

and value functions is difficult.

To overcome this difficulty, consider the simplified case of no adjustment costs (γ → 0). In

this case it is easy to show that a remaining firm will find it optimal to choose kt+1 = c1+c2·zt,

with c1, c2 constants depending on the parameter values. Put differently, capital scale is a

linear function of z and hence Normal as well. Under the interpretation of τz as a fixed

expense ratio, the Z-model represents sales scale as the linear function zt+θz ·kt in Equation 8.

Because both are Normal, their linear combination is Normal as well, and sales scale is hence

Normal in the Z-model. Expenses under this interpretation are taken as a fixed percentage

τz of sales and expense scale is hence Normal too. Firm income scale λt can be written

as the average of sales scale and expenses scale, and is hence Normally distributed as well.

Finally, in the absence of adjustment costs firm value is fully correlated with firm capital, as

in Hayashi (1982), and hence log value distributes Normally as well. While adjustment costs

may somewhat alter these predictions, the corporate finance literature cited above generally

finds adjustment costs to be quite small in magnitude (i.e., low γ) and these distributional

assumptions to generally hold in such models.

Similar reasoning applies to the SX-model, albeit more tenuously. The two processes

St, Xt are jointly-AR(1) in logs, and hence st, xt each distribute Normally, similar to zt.

Analytically finding the distribution of the outcome variable kt is again difficult, even in the

simple no adjustment costs case. If we were to assume capital scale kt in the SX-model is also

Normally distributed (as in the simple Z-model and in the data), one could then deduce that

sales and expense scales are Normally distributed, implying in turn that firm income scale

λ is also Normally distributed in the SX-model. Using a similar no-adjustment condition as

before implies value scale (or log firm value) is approximately Normally distributed as well.

I revisit and test the maintained assumption that kt is approximately Normally distributed

in Section 4 when estimating and simulating the SX-model.

In summary, both models predict the distribution of firm scale to be approximately
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Normal, a prediction supported by the data.

3.2 Income

What is the statistical distribution of income CF? Firm income, often called cashflows,

is of utmost importance in both major branches of financial research: corporate finance and

asset pricing. Cashflows are the departing point for corporate finance and production-based

asset pricing models. They are also both the means and ends of firm growth. Neverthe-

less, the statistical distribution of income has seen scant interest in the economic literature,

especially in contrast with the heavily-studied firm size distribution.

While the Z- and SX-models agree on the shape of the size distribution (approximately

log-Normal for both models), the two deviate when one considers the distribution of firm

income CF. As noted prior, the Z-model counter-factually yields firms with strictly positive

income. The lack of negative income in such models ignores a critical feature of the profit-

and-loss mechanism of firm dynamics — namely, losses. Specifically, the Z-model predicts

income to be approximately log-Normally distributed as well. The SX-model, in contrast,

predicts each of sales and expenses to be log-Normal, and their difference, firm income, to

distribute as the difference between two correlated log-Normal RVs.

The difference-of-log-Normals distribution arises due to a simple set of statistical facts: (i)

both the sum and difference of two Normal RVs are Normal; (ii) the sum of two log-Normal

RVs is best approximated by a log-Normal RV; and (iii) the difference of two log-Normal RVs

is decidedly not log-Normal. For one, the log-Normal is strictly positive, while the difference-

of-log-Normals is supported on the entire real line R. Further, the difference-of-log-Normals

exhibits log-Normal (i.e., heavy) tails in both the positive and negative directions, yielding

a distributional shape quite different from the Normal “Gaussian bell curve.”

Panel (a) of Figure 2 presents a truncated view of the income distribution, in the lim-

ited range between −50M and +100M. Income clearly presents exponential tails in both

the positive and negative directions, explaining the need for truncation in Panel (a). The
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common way of dealing with exponential tails, applying a log transform, cannot be used due

to the negative values involved. Two candidate transforms that can deal with the double-

exponential nature of the tails are

neglog(x) = sgn(x) · log(1 + |x|) −−−→
|x|�0

sgn(x) · log(x)

asinh(x) = log(x+
√

1 + x2) −−−→
|x|�0

sgn(x) ·
(

log(x) +
√

0.5
) (21)

with the asinh transform the inverse of the Hyperbolic Sine function of Equation 16, and

sgn() the sign function. The asinh transform, also known as IHS, has recently seen increased

interest as an ad-hoc method of transforming non-positive economic values.14 Here it instead

arises as a natural and theoretically-based transform from the λτ -model.

Panel (b) hence presents the untruncated income distribution, with the x-axis under

asinh-transform, or equivalently displaying the asinh of income CF. The two Normal dis-

tributions, one at the positive side of zero and one at the negative side, are evident. The

panels are also overlaid with MLE-fitted difference-of-log-Normals distributions, exhibiting

excellent fit. The fit is also seen in the appropriate q-q plot in Panel (c). The formal dis-

tributional tests reported in Table 4 support this conclusion. Income CF is not rejected as

distributing difference-of-log-Normals using either test. The same is true for the top-down

income definition CA, adding to the robustness of this result. It is worth noting that the

SX-model theoretically predicted a specific, novel statistical distribution for cashflows which

we have now confirmed in the data.

To further inspect the dependence of income on scale, panel (d) of Figure 2 presents a

closer look at the distribution of income. I first split the data into 49 equal bins, based on

firm capital KT, ignoring the top and bottom 1% of observations, such that each bin contains

2% of the observations. For each bin, Panel (d) plots the (10, 25, 50, 75, 90)th percentiles of

(asinh) income, separately for positive and negative income values. Larger firms earn and

14See e.g. Bellemare and Wichman (2020); Chen and Roth (2024); Mullahy and Norton (2024) for a review.
The asinh trades off fixed bias at large |x| with less bias near x = 0, and is also differentiable everywhere.
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Fig. 2. Firm income distributions. Panel (a) presents the (truncated) distribution of CF
in linear scale while Panel (b) presents the untruncated distribution in asinh scale. Panel
(c) presents the q-q plot corresponding to Panel (b). Panel (d) presents the dependence of
income on capital, by presenting the (10,25,50,75,90)th percentiles of asinh(CF), conditional
on the sign of CF, for 49 KT scale bins. Panel (e) presents income intensity (average product
of capital), and panel (f) the corresponding q-q plot. Panels (g),(h) present the distributions
of sinh(τ) and firm income efficiency τ , respectively. Panel (i) presents income growth, given
by Equation 27. Panels (a),(b),(e),(g),(h),(i) are overlaid with MLE-fitted difference-of-log-
Normals distributions, which is the distribution tested against in the q-q plots of Panels
(c),(f).
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Table 4
Distributional tests

This table presents the results of tests of distributional form for income (CF), alt. income
(CA), APK (CF/L.KT), transformed and raw income efficiency (sinh(τ) and τ), income
growth (dCF), alt. income growth (dCA), sales growth (dSL), capital growth (dKT), and
firm value growth (dVL). K-S is a Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50
bins; A-D is an Anderson-Darling test. Panels (a) and (b) report the test statistics and their
p-values rejecting the relevant distribution for the Normal and difference-of-log-Normals,
respectively. Panel (c) reports the relative likelihoods for each distribution using the AIC
and BIC.

CF CA APK sinh(τ) τ dCF dCA dSL dKT dVL

Panel (a): Normal

K-S >0.5 >0.5 0.207 0.260 0.254 0.262 0.259 0.229 0.211 0.202
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C-2 >999 >999 >999 >999 >999 >999 >999 >999 >999 >999
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A-D >999 >999 774.8 >999 >999 >999 >999 >999 >999 >999
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel (b): Difference-of-log-Normals

K-S 0.003 0.003 0.005 0.011 0.009 0.007 0.005 0.006 0.003 0.008
p-val 0.144 0.156 0.104 0.056 0.066 0.074 0.095 0.087 0.155 0.069
C-2 8.493 11.75 15.18 22.47 20.23 59.03 25.62 17.44 7.633 39.91
p-val 0.140 0.110 0.096 0.077 0.078 0.049 0.073 0.089 0.171 0.059
A-D 0.219 0.186 0.390 2.163 1.632 1.114 0.691 0.505 0.152 1.080
p-val 0.115 0.121 0.095 0.057 0.068 0.070 0.080 0.089 0.130 0.070

Panel (c): Relative likelihood tests

AIC R.L.:
N 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BIC R.L.:
N 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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lose more money than smaller firms, so the “middle” of the panel hollows as firm scale

rises. Consider the following thought experiment: if you knew a firm had $1B of profits last

year, but this year it suffered an unknown loss — what would be your guess regarding the

magnitude of the loss? A single-factor thinking would imply the best guess is some small

negative loss, close to zero. The data imply the correct intuition is that the firm had losses

of about $800M this year, stemming from the interaction of scale λ (setting the magnitude)

and operational efficiency τ (setting the sign).

3.3 Efficiency

Consider next an important property of the difference-of-log-Normals distribution: it is

closed under multiplication and division by a log-Normal RV — a property it inherits from

the closure of the Normal distribution to addition and subtraction. I.e., if L1, L2, L3 are

three (possibly correlated) log-Normal RVs, then (L1 − L2) ∼ DLN (by definition) but also

(L1 − L2) · L3 ∼ DLN and (L1 − L2)/L3 ∼ DLN.

An example is the average product of capital APK in the SX-model:

APK =
Yt
Kt

=
exp (st + θs · kt)− exp (xt + θx · kt)

exp (kt)

= exp (st + (θs − 1) · kt)− exp (xt + (θx − 1) · kt) ∼ DLN

(22)

Put differently, the SX-model predicts the APK to distribute difference-of-log-Normals,

whereas a similar analysis will yield a prediction that the APK distributes log-Normally in the

Z-model (and again barring negative APK values). Panel (e) of Figure 2 presents the APK

in the data, with MLE-fitted difference-of-log-Normals distribution, and Panel (f) presents

the matching q-q plot. The appropriate column in Table 4 presents the formal statistical

tests. Normality is strongly rejected but the fit of the APK to the difference-of-log-Normals

distribution is both visually and statistically sound.

A similar analysis applies to firm income efficiency τ , slightly transformed. While in the
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Z-model firm efficiency is constant, note that in the SX-model we can rewrite Equation 17

as,

sinh(τt) =
Yt

2 · exp(λt)
∼ DLN (23)

and the result follows because firm scale λt in the SX-model is Normal, as discussed above.

Panel (g) of Figure 2 ascertains this prediction, and the appropriate column of Table 4

confirms with formal tests.

Note that the prediction that sinh(τt) ∼ DLN does not necessarily imply τ ∼ DLN, be-

cause the sinh() of a Normal RV distributes difference-of-log-Normals as well.15 Interestingly,

Panel (h) of Figure 2, as well as the formal tests in Table 4, indicate the un-transformed

value τ distributes difference-of-log-Normals in the data as well. This is a deviation from the

prediction of the λτ -model, as currently specified. The model predicts τ should distribute

Normally, as it follows an AR(1) with Normal innovations. I return to this (intentional)

discrepancy in Section 4.4.

Figure 3 presents a heat map of the income scale and efficiency for all observations in

the data. We can see the majority of firm observations (about 86%) have efficiency in the

−0.1 to 0.2 range, with a clear ridge around τ = 0.033. Scale is approximately Normally

distributed and centered around λ = 6.5, as seen prior. The profit/loss line at τ = 0 appears

to significantly impact firms, as we would expect. We can further see that the location

(though not the dispersion) of efficiency τ is nearly independent of scale λ.16 The systematic

dependence of τ ’s dispersion on λ (i.e. the decreasing dispersion of τ as scale λ increases) is

another salient feature of the data not captured by the model, and I return to it in Section 4.4

as well.

15If n1 ∼ N, then sinh(n1) = 0.5 · (exp(n1)− exp(−n1)) ∼ DLN.
16I.e., the coefficient of regressing τt on λt is 0.005, with a within-R2 < 0.01.
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(a) Firm scale and efficiency heat-map

Fig. 3. Firm scale and efficiency. This figure presents a heat map (two-dimensional his-
togram) of the scale and efficiency of US public firms in the 50-year period 1970-2019. The
horizontal axis depicts firm scale λt = log(

√
Sales · Expenses), and the vertical axis presents

firm efficiency τt = log(
√

Sales/Expenses). Zero efficiency (i.e., the profit/loss line) is marked
by the white horizontal line.
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3.4 Income growth

The traditional definition of growth (e.g., the difference in consecutive logged values) has

hitherto been poorly defined when applied to income due to the existence of negative income

values that cannot be logged. Consider: What was the income growth of a firm with $100M

of losses last year (stemming e.g. from $1B in sales and $1.1B in expenses) and $200M of

profits this year (stemming e.g. from $1.2B in sales and $1B in expenses)? Parham (2023)

discusses extending the instantaneous growth definition of Barro and Sala-I-Martin (2003),

who use the definition dYt/dt
Yt

, to RVs possibly taking negative values, by using the definition

dYt/dt
|Yt| . The absolute value in the definition of growth is necessary to maintain the direction

of growth when beginning from negative values (i.e., positive growth will lead to more profit

or at least fewer losses).

The first way to use this equation is to apply it to firm income directly, measuring the

“signed” percentage growth in income

dYt/dt

|Yt|
≈ (Yt+1 − Yt) /|Yt| (24)

with the approximation stemming from using the forward discrete difference for the time

derivative. A second way is to assume Y follows the LL production function (i.e., the Z-

model), in which case Yt ≥ 0 and

dYt/dt

|Yt|
=
Yt ·

(
dzt
dt

+ θz · dktdt
)

Yt
≈ (zt+1 + θz · kt+1)− (zt + θz · kt)

= log(Yt+1)− log(Yt) ≡ dlog(Yt+1)

(25)

yielding the familiar difference-in-logs growth measure, denoted dlog(). The approximation

again arises from the forward discrete difference.
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The log-point growth of income in the Z-model can also be written as

dlog(Yt+1) = (1− ρz) · (µz − zt) + θz · (kt+1 − kt) + εzt+1
(26)

with zt distributing Normally as a property of the AR(1) process, εzt+1 distributing Normally

by Equation 10, and dlog(Kt+1) = kt+1 − kt difficult to pin down analytically in the general

case. But prior work, as well as the simple no-adjustment case and simulation results dis-

cussed below, indicate dlog(Kt+1) distributes Normally as well in the Z-model. This implies

income growth is Normally distributed in the Z-model. Note the dlog(Yt+1) income growth

measure, which is derived from the Z-model’s log-linear production function, fails when one

of the periods has negative income.

The third way to define income growth is to assume Y follows the SX-model’s production

function, which yields the result

dYt/dt

|Yt|
≈ St · dlog (St+1)− Xt · dlog (Xt+1)

|St − Xt|
(27)

that expresses income growth as a weighted sum of (log-point) sales growth and expenses

growth. This equation is useful for calculating income growth when one only has the values

of sales and expenses (and their lag), and is robust to negative income values. I.e., it provides

a proper growth measure that can answer the question posited in the opening paragraph of

this section. The equation is not, however, conducive to analytically exploring the resulting

distribution of income growth.

A fourth way to define income growth, equivalent to the third but yielding considerably

more intuition and analytical ease, is to define income growth using the λτ -model. In this

case,

dYt/dt

|Yt|
= sgn(τt) ·

[
dλt
dt

+
dτt
dt
· 1

tanh (τt)

]
≈ sgn(τt) ·

[
(λt+1 − λt) +

τt+1 − τt
τt

]
(28)
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The approximation is now due to two reasons: the forward discrete difference, as usual,

and replacing tanh(τt) with τt, which is valid because firm efficiency in the data is clustered

tightly in the region where tanh(τt) ≈ τt.
17

Consider the two terms in the large brackets. The first term is the difference in firm

income scales. Recall that firm income scale in the λτ -model is a scale (i.e., logged) value,

and hence this term is similar to the dlog() measure from the Z-model, which also measures

the difference between “income scales” (i.e., logs of income). The second term is novel, and

captures the percent growth in firm efficiency. The implications of the second term, and

especially the fact that it captures percent growth in efficiency rather than simple difference

in efficiency, are notable. Explosive income growth (or the heavy tails of income growth)

occurs due to operational leverage, or a “low base” in τ (i.e., τt close to zero). This then

leads to high growth in income.

As an example of the impact of operational leverage, consider a firm with $1B in sales and

$950M in expenses during period t. Firm scale is then λt = 6.88 and firm efficiency is τt =

0.026, both close to the median values observed in the data. First, assume that in period t+1

the firm increases both sales and expenses by 10% to $1.1B and $1.045B, respectively. This

means λt+1 = 6.98, 0.1 log-units higher, and τt = 0.026 is the same. Equation 28 will yield

income growth of 0.1, the same as percentage income growth 55/50−1 = 10%. Alternatively,

assume that in period t+ 1 the firm increases sales by 10% to $1.1B, but decreases expenses

by 10% to $855M . This means now λt+1 = 6.88, the same as λt, but τt+1 = 0.126 is 0.1

log-units higher. Equation 28 yields income growth of (0.126− 0.026)/0.026 = 3.9 log-units,

equal to the percent growth of income at 245/50 − 1 = 390%. The low-base phenomenon

described here is especially salient given our prior observation that τ is tightly concentrated

close to 0 in the data.

The correlation in the data between the λτ -based growth measure from Equation 28 and

the ”signed” percentage growth of income from Equation 24 is above 0.97. Furthermore,

17Note also that −1 ≤ tanh() ≤ 1.
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Table 5 ascertains that nearly all variation in income growth in the data stems from the

dynamics of percentage growth in the τ term, rather than from the dynamics of differences

in τ or differences in λ. This is another novel prediction of the model confirmed by the data.

Table 5
Determinants of income growth

This tale presents regressions of income growth (CFt+1 - CFt)/abs(CFt) on changes in firm
scale dλ = λt+1 − λt, changes in firm efficiency dτ = τt+1 − τt, and percent changes in firm
efficiency %τ = (τt+1 − τt)/τt. Four specifications are presented in the respective columns.
All regressions include firm and year fixed-effects, w/ N=165K.

(1) (2) (3) (4)

dλ 2.264 -5.19
s.e .8550 3.920
dτ 16.14 21.68
s.e 1.430 6.557
%τ .5036 .5036
s.e .0007 .0007

within-R2 .8022 .0000 .0001 .8020

Even using the λτ -formulation, it is difficult to analytically pin down the distribution of

income growth resulting from the SX-model, beyond the conclusion that it must be heavy-

tailed rather than Normal due to the low-base effect. Nevertheless, Panel (i) of Figure 2

presents the distribution of income growth, as defined by Equation 28, in the data along with

a fitted difference-of-log-Normal distribution. Here again, Normality is strongly rejected,

while the fit to the difference-of-log-Normals distribution is excellent, as Table 4 confirms

for the growth of both CF and the alternate definition CA.

3.5 Returns-to-scale

What are the returns-to-scale (RTS) implications of the different production functions?

The RTS of income w.r.t capital is simply defined in terms of the elasticity of Y() w.r.t K,

or the marginal product of capital (MPK) relative to the average product of capital (APK).
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For the Z-model, each of APK and MPK are log-Normally distributed, and in fact,

MPK = θz · APK, yielding the well-known results that all firms, regardless of their state,

always have RTS = θz.

For the SX-model, in contrast, we have both APK and MPK distributing difference-of-

log-Normals, and their ratio, RTS, given by:

RTSt =
θs · St − θx · Xt

St − Xt

(29)

or a form of “weighted average” of the two scale parameters of the model, θs and θx. No-

tably, the SX-model no longer implies constant RTS for all firms. Firms have different RTS

depending on their current sales and expenses, even if all firms in the economy share the

same scale parameters.

Better intuition regarding the mechanics and distribution of RTS can again come from

equivalently writing Equation 29 in terms of λ, τ using the Yλτ production function. In this

case, we have:

RTS = θλ +
θτ

tanh (τt)
≈ θλ +

θτ
τt

(30)

with θλ, θτ the scale parameters given by Equation 17. The model proposes a two-part

schedule for RTS. The first, constant term θλ, is the counterpart of the constant θz in the

Z-model, while the second term is novel and dependant on (inverse) τ . The division by τt

causes RTS to explode to ±∞ when |τt| → 0. This low-base effect, along with the large mass

of firms around τ = 0 in the data, then imply a heavy-tailed distribution of RTS. RTS is

however unobservable, due to the unobservability of MPK, so these predictions cannot easily

be tested.

3.6 Firm growth

The last data and model implications we consider are regarding firm growth. The def-

inition of firm growth naturally depends on the firm size measure used — the growth of
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what? — e.g. sales, capital, or value growth. For any measure of firm size Mt , firm growth

is defined as the log-point difference between periods (possibly corrected for dividends):

dMt ≡ dlog(Mt) = log(Mt) − log(Mt−1). Put differently, firm growth is the increase (or

decrease) in firm scale.

For example, using the data mnemonics from Table 1, firm capital growth in the data is

defined as dKTt = log(KTt) − log(KTt−1), or the increase in capital scale between periods

(in the models kt − kt−1). Firm equity value growth however corrects for dividends and

is defined as dEQt = log(EQt + DEt) − log(EQt−1), with EQt market value of equity at

the end of year t and DEt distributions to equity holders during year t. Note that dEQt

is the dividend-adjusted buy-and-hold return on firm equity. This definition highlights the

fact that the distribution of firm growth is possibly one of the most-studied distributions in

economics, owing to the fact equity returns are merely one measure of firm growth.

Consider first the data. Figure 4 presents the distributions of sales growth, capital

growth, and value growth for the sample, along with the respective q-q plots. All three are

notably heavy-tailed, and all three present remarkable fit to the difference-of-log-Normals

distribution. Normality is easily rejected, but difference-of-log-Normals is not rejected for

any of the distributions, as the relevant columns of Table 4 show. Equity returns are a special

type of firm growth metric, because data are available at higher frequency than annually.

Figure 5 hence presents the distributions of yearly, monthly, and daily stock returns for the

sample. The fit to the difference-of-log-Normals is again remarkable, as the q-q plots of

Figure 5 and the formal tests of Table 6 show.18 The yearly returns presented in Figure 5

are raw, but monthly and daily returns are the excess returns from a Fama-French 3-factor

model. This is to demonstrate that these results hold even for factor-model residuals.

Given our observations so far regarding the difference-of-log-Normals or heavy-tailed

distributions of firm income, income growth, APK, and MPK in the data and the SX-

model, the results above for firm growth may not be surprising. These economic magnitudes

18In unreported results, I find that the Stable and Laplace distributions - two candidate return distributions
discussed in the literature, are both strongly rejected.
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Fig. 4. Firm growth distributions. Panels (a)-(c) present the histograms of sales (SL) growth,
capital (KT) growth, and firm value (VL) growth, respectively, for a set of 143K firm-year
observations from 1970-2019. The histograms are overlaid with MLE-fitted difference-of-log-
Normals distributions. Panels (d)-(f) present the respective q-q plots.

Table 6
Equity returns - Distributional tests

This table presents results of tests of distributional form vs. the difference-of-log-Normals
distribution for equity returns at the yearly, monthly and daily frequencies. The table
presents both raw and excess returns relative the the Fama-French 3-factor model. K-S is a
Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D is an Anderson-Darling
test.

Yearly Monthly Daily
Raw FF3 Raw FF3 Raw FF3

K-S 0.002 0.003 0.002 0.003 0.006 0.007
p-val 0.256 0.166 0.277 0.148 0.084 0.080
C-2 3 6 2 9 18 21
p-val 0.962 0.199 1.000 0.136 0.086 0.078
A-D 0.03 0.13 0.05 0.19 0.28 0.47
p-val 0.297 0.138 0.199 0.120 0.105 0.090
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Fig. 5. Equity return distributions. Panels (a),(c),(e) present the histograms of yearly,
monthly, and daily equity returns (in log-point units). Yearly returns are raw while monthly
and daily returns are excess returns relative to the Fama-French 3-factor model. The panels
are overlaid with fitted difference-of-log-Normals distributions. Panels (b),(d),(f) present the
respective q-q plots.
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are at the heart of the dynamic program of the firm, and it is intuitive that their impact

will propagate to the distribution of firm growth. Nevertheless, the finding above that the

heavily-studied equity returns distribution cannot be rejected as a difference-of-log-Normals

— a novel distribution predicted by the SX-model — merits highlighting.

Directly ascertaining the models’ implications for firm growth is again difficult because

they lack closed-form solutions to the value and policy function. Despite that, some progress

can be made in two avenues: by analytically considering the simplified case in which γ → 0,

and via model estimation and simulation. I discuss the first method here before moving on

to simulations in the next section.

Because capital is the index of size in the model, it is useful to consider the case of capital

growth. Note that for γ → 0 case, MPK is the core determinant of firm size and growth in

the general q-theory model. The firm simply sets its next period capital Kt+1 to maintain

Et [MPK] = r + δ, regardless of Kt, and all capital growth just follows MPK changes.

The Z-model, unsurprisingly, predicts approximately Normal capital growth, as:

MPKt = θz · exp(zt − (1− θz) · kt)

Kt+1 = exp

(
Cz + ρz · zt

1− θz

)
Cz = log

(
θz

r + δ

)
+ (1− ρz) · µz +

σ2
z

2

dlog(Kt+1) =
ρz

1− θz
· (zt+1 − zt)

(31)

with Cz a constant depending on the parameters of the model. Capital growth is a linear

function of changes in the stochastic state variable zt, which are Normally distributed in the

Z-model based on the assumption regarding the Normal dynamics of z in Section 2.3.
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The SX-model, in contrast, yields:

MPKt = θs · exp (st − (1− θs) · kt)− θx · exp (xt − (1− θx) · kt)

exp(Cs + ρs · st − (1− θs) · kt+1)︸ ︷︷ ︸
gs(st,kt+1)

− exp(Cx + ρx · xt − (1− θx) · kt+1)︸ ︷︷ ︸
gx(xt,kt+1)

= 1
(32)

with Cs and Cx defined analogously to Cz, and the second equation the non-separable equa-

tion defining kt+1 in terms of st, xt and the model parameters. The equation determines kt+1

such that the LHS, itself a difference of log-linear functions, equals 1. Even with Normal

innovations to st and xt, as the SX-model posits, their exponential opposing forces then yield

difference-of-log-Normals growth in capital.

To further analyze the distributions governing the firm without the limiting assumption

of no adjustment costs (γ → 0), I next estimate and simulate the models, yielding numeric

value and policy functions that can then be tested.

4 Estimation and simulation of models

This section describes taking the Z- and λτ -models to data via indirect inference. I

concentrate on the λτ rather than the equivalent SX formulation of the SX-model because

it resolves the challenge of estimating models with highly correlated stochastic variables.19

After presenting the identification strategy and how to obtain initial parameter values, I

provide the estimation results. Estimation is relatively straightforward, owing to the observ-

ability of sales, expenses, and capital. I then simulate the estimated models in Section 4.3

and consider the distributions of firm outcomes in the models vs. the data. The two-factor

λτ -model is able to replicate the difference-of-log-Normals distribution of firm outcomes, and

also fits several important un-targeted firm moments considerably better than the Z-model.

19The stochastic variables controlling sales and expenses in the SX-model, s and x, are highly correlated
in the data as expected (with correlation coeff. > 0.95). Using λ̂ = (s+ x)/2 and τ̂ = (s− x)/2 resolves the

problem and λ̂, τ̂ are nearly uncorrelated.
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4.1 Identification and initial parameter values

The Z- and λτ -models are described by the respective parameter vectors

Θz = {r, δ, τz, θz, ρz, µz, σz, γ, ν}

Θλτ = {r, δ, θλ, ρλ, µλ, σλ, θτ , ρτ , µτ , στ , ρλτ , γ, ν}
(33)

which we aim to estimate using the method of simulated moments. This task is considerably

simplified by noting the following three facts: (i) r, δ are relatively easy to pin down; (ii) initial

guesses for the θ values (θz, θλ, θτ ) can be derived from steady-state arguments regarding

returns-to-scale (RTS), conditional on r, δ; and (iii) The stochastic state variables zt, λ̂t, τ̂t

are observable, conditional on their respective θ values, allowing us to estimate their dynamic

AR(1) parameters directly.

Pinning down δ is easy because firms generally report their depreciation expenses. The

observed values of both the depreciation rate DP/L.KT and investment rate IT/L.KT are

tightly packed around 0.04 in the data. I hence set δ = 4%. Similarly, I set r = 4% because

the observed values of both dispensation yield DI/L.VL and debt payout ratio DD/L.DB are

tightly packed around 0.04 as well. I also set the expense parameter of the Z-model τz to a

value of exp(-2*0.033) = 0.936, the (transformed) value of the efficiency “ridge” in Figure 3,

or equivalently the median ratio of XS/SL in the data.

Moving on to initial guesses for the θ values — note that for firms close to steady state,

or when γ → 0, we have MPK ≈ r + δ from Equation 7. Hence, we can write:

RTS∗ =
r + δ

APK
=


θz if Yt = Yz()

θλ + θτ
tanh(τt)

if Yt = Yλτ ()

(34)

Because APK and τt are observable and we have already established values for r, δ, we can

use this equation to estimate initial guesses for the θ values, when considering firms plausibly

in steady-state. Doing so yields initial values: θz = 0.7, θλ = 0.268, θτ = 0.015. Equivalently,
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this implies θs = 0.283, θx = 0.253.

The marked difference between the initial RTS guesses of the Z-model and the λτ -model

is notable. It stems from the fact the median RTS of around 0.7, a much-used value in the

relevant literature, arises from the interaction between the lower RTS of sales and expenses.

With τ in the data clustered around 0.033, the two-part schedule in the λτ -model and the

estimates above imply the typical firm has an RTS = 0.268 + 0.015/0.033 = 0.72, close

to the initial value found for θz. The dynamics of τ are thus critical to understanding the

dynamics of RTS in the data.

Finally, the quasi-observability of the stochastic state variables zt, λ̂t, τ̂t can be seen by

rewriting the definitions of Yz() and Yλτ () in Equations 8 and 17 as

zt = log ((1− τz) · St)− θz · log (Kt)

λ̂t = λt − θλ · log (Kt)

τ̂t = τt − θτ · log (Kt)

(35)

and noting that sales and expenses (and hence scale and efficiency) as well as capital

(St,Xt, λt, τt, Kt) are all observable. This means knowledge (or a guess) of the θ values

allows us to observe all state variables in the two models. Using the imputed values for the

stochastic state variables, we can then estimate initial guesses for the parameters controlling

their dynamics, namely ρ�, µ�, σ�.

The estimation of σ�, the standard deviation of the innovations to each stochastic vari-

able, raises a challenge. The models assume innovations to the stochastic variables (i..e,

εz, ελ, ετ ) are homoscedastic — have dispersion independent of firm scale — such that e.g.

SD [st+1 − ρs · st] = SD
[
εst+1

]
≡ σs∀s. The data however exhibits clear decreasing dispersion

(i.e. heteroscedasticity) with scale of the innovations to the stochastic variables, similar to

our findings prior about the decreasing dispersion of τ with scale.

Panel (a) of Figure 6 presents the binned log(SD[]) and log(IQR[]) of the innovations to

the stochastic variable controlling sales s, by scale. The panel presents systematic decreasing
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dispersion, which also applies to innovations in λ and to the outcome variables of the firm,

the growth in capital and the growth in value, whose binned log(IQR[]) are presented in

Panel (b). I return to this puzzling finding as well at Section 4.4 below. In light of the

evidence in Panels (a) and (b), I set σ� to match the dispersion of innovations around the

median scale in the data, λ = 6.5.

The parameter ν, controlling exit in all models, determines the average-q V L/KT at

which firms exit because firms with Vt < V exit
t = ν · Kt will find it more profitable to exit

than remain. Throughout the analysis, I present and use the log of average-q, log(VL/KT)

rather than “simple” average-q VL/KT, because we already established that both value and

capital are approximately log-Normal. The ratio of two log-Normal RVs is itself log-Normal,

implying a less distorted way of measuring the highly skewed and always positive average-q

is measuring it in log terms. The distribution of (log) average-q in the data is presented

in Panel (c). The exit-induced censoring below log(VL/KT)=0 (i.e., VL=KT) is evident,

leading to a deviation from the predicted Normal shape. I set ν to the median average-q

conditional on it being < 1, which is approximately 0.85 in the data.
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Fig. 6. Estimation stylized facts. For each of 49 scale bins, panel (a) presents the binned (log)
dispersions, log(SD[]) and log(IQR[]), of the growth in the stochastic variable s, controlling
sales. Panel (b) repeats for log(IQR[]) of the growth in: firm scale λ, assets KT, and value
VL. Panel (c) presents the distribution of log average-q log(VL/KT), overlaid with a fitted
Normal.

The recipe for initial guesses is also used to determine which moments we should match

in the estimation procedure. For θz, θλ, I use the median of RTS∗ from Equation 34, along
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with its IQR to identify θτ . Note this is equivalent to matching the location and dispersion

of APK. For the AR(1) dynamics parameters, I use their direct data counterparts (or the

heavy-tail-robust versions thereof) as identifying moments.

Finally, to identify the adjustment cost parameter γ, I match the persistence of capital

growth dlog(Kt+1) between periods. When γ → 0, firms immediately adjust to the optimal

capital level every period and hence capital is independent between periods, leading to zero

capital growth persistence. But as γ increases, firms adjust slowly towards their optimal

capital level and we observe increasing capital growth persistence. I was unable to find

a natural initial guess for the adjustment cost parameter γ, though the prior work (cited

above) generally finds fairly low values for γ, around 0.01-0.1. The initial values for γ are

hence set such that capital growth persistence is matched when holding all other parameters

at their initial values.

4.2 Estimation

The estimation procedure is two-step: in the first step, I guess (i.e., grid-search) θz or

θλ, θτ values, and in the second step, I conduct a full method of simulated moments (MSM)

estimation conditional on the θ values. I then choose the parameter values minimizing the

Mahalanobis distance between the simulated and data moments. The two-step procedure

is necessary due to our reliance on the observability of the stochastic variates and their

dependence on θ, leading to a dependence of their moments on θ as well. Table 7 summarizes

the estimation and presents for each model: the initial and estimated parameter values; the

identifying moments at the initial and estimated parameter values; the identifying moments

in the data; and the t-value on the difference between the data and simulated moments at

the estimated parameters. Throughout, the model uses the robust estimates of scale and

dispersion, median MED[] and inter-quartile range IQR[], with the IQR divided by 1.35 to

make it comparable to the standard deviation of a Normal distribution.

Panel (a) presents the estimation results for the Z-model. It is notable that the estimated
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parameter values are very close to their initial guesses, and that the identifying moments are

matched very well too. Furthermore, the AR(1) parameters are also very close to the values

of their identifying moments, implying quasi-observability works well as an identification

strategy. The RTS parameter θz is estimated to be close to 0.7, a common value in such

models.

Panel (b) of Table 7 moves on to the estimation results of the λτ -model. The model

matches its identifying moments very well. The estimated value for θλ is slightly higher than

its initial value (0.3 vs. 0.27), but with the estimated values the model matches both the

location and dispersion of RTS∗, the identifying moments for θλ, θτ . The AR(1) coefficients

are again well-identified and matched to their data and simulation counterparts, with the

exception of µλ, estimated to a value of 2.9 vs. a value of 4.7 in the data and simulation.

The source of this discrepancy appears to be exit-induced selection — firms with low λ̂ exit,

such that the ergodic distribution of λ̂ of remaining firms matches the data. The capital

adjustment parameter γ is somewhat higher at 0.06 but still within the 0.01-0.1 range of

previous work, and the persistence of growth is again well-matched by the model. Overall,

both exactly-identified models are able to match their identifying moments and appear to

be well-identified.

4.3 Simulation

While the models are able to match their identifying moments, the core questions in

this work revolve around un-targeted moments and distributions. With estimated models

in hand, we can now simulate the models and observe their ability to match the distribu-

tional forms and moments not targeted by the MSM procedure — most importantly those

pertaining to the heavy tails of income and growth.

Table 8 presents the values of some un-targeted moments in the data and the two mod-

els. The table also includes the standard errors on the data moments (obtained via block-

bootstrap), which are mostly very low as the moments are well-measured in the data. The

45



Table 7
Estimation results

Panels (a) and (b) present the results of estimating the Z-model and λτ -model, respectively.
Parameters’ initial and estimated values are reported in the first four columns. The values
of the corresponding identifying moments at the initial and estimated parameter values, as
well as in the data, are reported in the next four columns. t-val is the t-statistic on the
moment’s error (Estim-Data). MED, IQR, RHO, and COR are the median, inter-quartile
range (divided by 1.35), persistence, and correlation operators. The stochastic variables are
defined by Equation 35.

Panel (a): Z-model

Value at: Value at:
Name Init Estim Moment Init Estim Data t-val

θz RTS 0.699 0.685 MED[RTS*]a 0.713 0.699 0.699 -0.021
ρz z pers. 0.956 0.959 RHO[z] 0.957 0.959 0.959 -0.307
µz z mean 2.141 2.232 MED[z] 2.141 2.232 2.232 -0.037
σz dz std. 0.127 0.126 IQR[dz]b 0.127 0.126 0.126 0.243
γ Cap. adj. 0.006 0.006 RHO[dk]b 0.303 0.298 0.295 -0.356

Panel (b): λτ -model

Value at: Value at:
Name Init Estim Moment Init Estim Data t-val

θλ λ RTS 0.268 0.302 MED[RTS*]a 0.560 0.689 0.698 0.636
θτ τ RTS 0.015 0.016 IQR[RTS*]a 0.223 0.356 0.359 0.253

ρλ λ̂ pers. 0.990 0.989 RHO[λ̂] 0.990 0.989 0.989 0.113

µλ λ̂ mean 4.882 2.866 MED[λ̂] 5.627 4.698 4.674 -1.238

σλ dλ̂ std. 0.119 0.118 IQR[dλ̂]b 0.119 0.118 0.118 0.065
ρτ τ̂ pers. 0.563 0.562 RHO[τ̂ ] 0.562 0.553 0.562 0.708
µτ τ̂ mean -0.068 -0.074 MED[τ̂ ]b -0.068 -0.073 -0.074 -1.026
στ dτ̂ std. 0.022 0.022 IQR[dτ̂ ]b 0.022 0.022 0.022 0.194

ρλτ dλ̂, dτ̂ cor -0.126 -0.123 COR[λ̂, τ̂ ] -0.127 -0.128 -0.123 0.349
γ Cap. adj. 0.020 0.060 RHO[dk]b 0.294 0.294 0.295 0.153
a For firms with dk ∈ IQR[dk] and CF ≥ 1.
b For firms around median scale λ ∈ IQR[λ].
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Z-model yields kurtosis values close to 3 (the kurtosis of the Normal distribution) for all

growth measures (growth in income, capital, value, scale, and efficiency), as predicted in

Sections 3.4 and 3.6. The same is not true for the λτ -model. As predicted, the kurtosis of

income growth, capital growth, and value growth are all considerably greater than 3, and

the λτ -model matches the kurtosis values in the data fairly well, even without having any

moments of kurtosis targeted in the estimation.

Table 8
Estimation results

This table presents moments of the Data, Z-model, and λτ -model, respectively. The moment
values for each model are at the estimated parameter values of Table 7. The operator and
stochastic variable definitions are from the same table. KUR is the kurtosis operator. s.e. is
the std. err. of the data moment.

Moment Data Z λτ s.e.

MED[cf ] 4.441 3.622 4.291 0.030
IQR[dcf ] 0.436 0.222 0.561 0.004
KUR[dcf ] 8.114 2.989 6.240 0.319
MED[k] 6.527 6.037 6.658 0.029
IQR[dk] 0.130 0.270 0.135 0.002
KUR[dk] 14.426 2.998 11.751 1.152
MED[v] 6.850 6.572 6.925 0.031
IQR[dv] 0.256 0.193 0.153 0.002
KUR[dv] 6.901 3.003 7.522 0.705
MED[λ] 6.626 6.334 6.800 0.028
IQR[dλ] 0.132 0.222 0.125 0.002
KUR[dλ] 20.539 2.989 3.856 1.863
MED[τ ] 0.033 0.033 0.037 0.001
IQR[dτ ] 0.023 N/A 0.022 0.001
KUR[dτ ] 72.509 N/A 2.988 9.900
MED[v − k] 0.187 0.527 0.254 0.006
IQR[v − k] 0.449 0.117 0.151 0.006
MED[RTS*] 0.698 0.698 0.679 0.006
IQR[RTS*] 0.359 0.028 0.356 0.010

A visual comparison of these results is provided in Figure 7. The figure presents, for the

data and the simulations of the Z- and λτ -models, histograms of (asinh) income cf, income

growth dcf, capital growth dk, and adjusted value growth (i.e. returns) dv. The data and λτ
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simulation histograms are overlaid with MLE-fitted difference-of-log-Normal distributions,

while the Z simulation is overlaid with MLE-fitted Normal distributions. The visual fit of

the data distributions to the difference-of-log-Normal is excellent, as previously ascertained

in Table 4. The Z-model distributions again appear Normal and exhibit no heavy tails,

while the λτ -model distribution are difference-of-log-Normal. The λτ -model yields the now-

familiar double-peaked income distribution, capturing both profit and loss. It also captures

the peaked, non-Normal distributions of income, capital, and value growth.

Formal distributional tests for the simulated cf, dcf, dk, and dv in the Z- and λτ -models,

vs. the Normal, skew-Normal, and difference-of-log-Normals are reported in Table 9. For

the Z-model, none of the variables is rejected as a Normal. The relative likelihood tests,

designed to choose the most parsimonious model, prefer the Normal for income cf, and value

growth dv, but the skew-Normal for income growth dcf and capital growth dk. These are

all in line with the expected approximate Normality of the Z-model. For the λτ -model,

Normality and skew-Normality are rejected for all four, while the difference-of-log-Normals

is not rejected for any of the four. The relative likelihood test again overwhelmingly prefers

the difference-of-log-Normals over the Normal and skew-Normal.

Considering the dynamics of firm scale λ and firm efficiency τ , we can observe puzzling

deviations from the assumptions of our model in Table 8. Recall that we assumed all stochas-

tic innovations are Normal in Section 2.5. Specifically, we have ελ, ετ ∼ Normal, implying

dλ and dτ should have Normal tails and kurtosis of 3. This is far from the case in the data,

and the innovations to both are exceedingly heavy-tailed. Our current model cannot explain

this stylized fact. This fact, however, explains some of the deviations we observe between

outcome variables in the data and SX-model — with heavy-tailed innovations, we would

expect heavier-tailed growth, especially in dv, as well as wider (i.e. higher IQR) distribution

of (log) median-q v − k. I return to this data factoid shortly, along with the other puzzling

factoids identified in the paper. Finally, note that the λτ -model is the only one capable of

even coming close to matching the values of MED[v − k] and IQR[RTS∗].
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Fig. 7. Data and Model distributions. This figure presents the histograms of several firm
variables in the data and the Z and λτ models. The variables presented are (asinh) income
cf, income growth dcf, capital growth dk, and value growth dv. The figures are overlaid with
MLE-fitted distributions as indicated.

49



Table 9
Distributional tests

This table presents the results of tests of distributional form for (asinh) income cf, income
growth dcf, capital growth dk, and value growth dv, in the Z and λτ -models. K-S is a
Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D is an Anderson-Darling
test. Panels (a)-(c) report the test statistics and their p-values rejecting the distribution for
the Normal, skew-Normal, and difference-of-log-Normals, respectively. Panel (d) reports the
relative likelihoods for each distribution using the AIC and BIC.

Z-model λτ -model
cf dcf dk dv cf dcf dk dv

Panel (a): Normal

K-S 0.002 0.006 0.011 0.004 0.043 0.143 0.174 0.034
p-val 0.483 0.081 0.054 0.116 0.016 0.000 0.000 0.022
C-2 1.162 11.12 32.69 25.12 459 >999 >999 262
p-val 1.000 0.114 0.064 0.096 0.016 0.000 0.000 0.023
A-D 0.017 0.934 2.951 2.493 41.55 412 662 35.04
p-val 0.436 0.073 0.051 0.057 0.016 0.000 0.000 0.018

Panel (b): skew-Normal

K-S 0.002 0.001 0.002 0.004 0.027 0.145 0.190 0.033
p-val 0.571 0.687 0.254 0.138 0.027 0.000 0.000 0.023
C-2 1.205 1.002 1.704 11.19 142 >999 >999 222
p-val 1.000 1.000 1.000 0.112 0.032 0.000 0.000 0.025
A-D 0.020 0.022 0.078 1.179 12.54 365 600 31.43
p-val 0.391 0.364 0.166 0.082 0.030 0.000 0.000 0.019

Panel (c): Difference-of-log-Normals

K-S 0.002 0.002 0.003 0.004 0.002 0.010 0.008 0.009
p-val 0.194 0.219 0.149 0.112 0.287 0.058 0.068 0.064
C-2 3.717 2.768 3.982 5.339 5.585 110 44.29 40.61
p-val 0.803 1.000 0.694 0.287 0.253 0.036 0.056 0.058
A-D 0.121 0.158 0.310 0.333 0.117 2.670 1.887 2.013
p-val 0.280 0.128 0.102 0.100 0.142 0.053 0.059 0.058

Panel (d): Relative likelihood tests

AIC R.L.:
N 1.000 0.004 0.000 1.000 0.000 0.000 0.000 0.000
SN 0.379 1.000 1.000 0.115 0.000 0.000 0.000 0.000
DLN 0.018 0.005 0.002 0.007 1.000 1.000 1.000 1.000

BIC R.L.:
N 1.000 0.148 0.000 1.000 0.000 0.000 0.000 0.000
SN 0.010 1.000 1.000 0.062 0.000 0.000 0.000 0.000
DLN 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000
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4.4 A few puzzles

During the analysis in Sections 3 and 4, we have encountered several puzzling results.

They were: (i) the decreasing dispersion with scale of firm efficiency τ in Figure 3; (ii) the

decreasing dispersion with scale of the innovations to the stochastic variables and of the

growth in capital and the growth in value documented in Figure 6; (iii) the difference-of-log-

Normals distributions of τ, dλ, dτ , all of which are predicted to be Normal by the model, as

documented in Table 4 and Table 9.

While I leave a full consideration of these puzzles for future work, it is worth noting that

all of them can be rationalized by appealing to the internal structure of the firm. Consider

the firm as composed of sub-units, each behaving according to the SX-model above, and

the firm as their simple agglomeration. In this case, the decreasing dispersion with scale

is a direct outcome of portfolio theory, similar to how a portfolio of more stocks has a

lower variance. Larger firms will tend to have more sub-units, leading to lower growth

variance. The same assumption is also sufficient to yield difference-of-log-Normals growth in

the aggregate stochastic variables and outcome variables, even if each sub-unit’s stochastic

growth is Normal, due to the intervening impact of heavy-tailed capital growth in each

sub-unit.

5 Conclusion

This work begins with possibly the most fundamental of accounting identities, income =

sales - expenses. It uses this identity to motivate a novel production function for the firm,

the difference-of-log-linears production function which generalizes the log-linear (or Cobb-

Douglas). Together with the CLT-implied fact that AR(1) processes have Normal ergodic

distributions, the production function predicts a little-known distribution for firm income

and consequently firm growth, the difference-of-log-Normals distribution. These theoreti-

cal predictions are confirmed by the data in statistical tests, horse races, and simulation
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exercises. Because equity returns are themselves one measure of firm growth, the difference-

of-log-Normals arises as the distribution of returns as well. These results are achieved without

using: time-varying volatility, factors external to the firm, mixture-of-Normals assumptions,

or non-standard stochastic processes. Thus, this paper provides an intuitive and simple an-

swer to the question posed in its title: “Why are firm growth distributions heavy-tailed?”

Namely — operational leverage and the interaction of sales and expenses in the firm.

The theoretical analysis yields two new magnitudes for characterizing firms — firm in-

come scale and efficiency, both defined in terms of sales and expenses. Both measures are

observable and easy to calculate and interpret. Firm income scale is tightly correlated with

other measures of firm scale, and firm efficiency changes are shown to be the main driver of

income growth. I show that the source of heavy-tailed growth can be traced to a low-base

effect in firm efficiency and that for most firms, firm efficiency is indeed remarkably close to

zero, yielding rampant low-base effects. Separately accounting for sales and expenses further

enables new and coherent definitions of income growth and returns to scale, among others.

Another contribution of the analysis is the treatment of growth from negative values and

the development of measures of growth robust to such values.

While the question this paper considers may seem somewhat aloof from practical consid-

erations, the findings have many downstream uses. Models based on the SX-model can: (i)

Replicate the distribution of firm income — the departing point for corporate finance and

production- or consumption-based asset pricing models; (ii) Replicate the distribution of

equity returns — an object of intense interest in financial economics and specifically in asset

pricing; (iii) Provide models with extreme winners and losers — i.e. models with heavy-

tailed growth; (iv) Allow consideration and modeling of loser firms — as standard models

cannot model firms experiencing losses; (v) Enable straightforward models of exit and entry

— thus enabling investigation of dynamism within the work-horse q-theory model.

The production function presented also informs production-based asset pricing models

such as Delikouras and Dittmar (2021). The idea that investment return equals stock return
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from Cochrane (1991) is pre-disposed on the assumption of a linear-homogeneous production

function. This work establishes this is far from the case for firms and that the deviations

from the assumption have important implications.

Finally, because firms comprise the productive side of the economy, and dynamic stochas-

tic general equilibrium (DSGE) models ubiquitously include firms as the source of all indi-

vidual income, embedding the production function in DSGE models allows for a micro-

foundation of heavy-tailed income growth in a succinct and tractable manner. This follows

e.g. the work of Guvenen, Ozkan, and Song (2014); Guvenen, Karahan, Ozkan, and Song

(2021). Thus, heavy-tailed growth can be embedded in “upstream” economic models as well.
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Mandelbrot, B., 1960. The Pareto-Lévy Law and the Distribution of Income. International

Economic Review 1, 79–106.

Mandelbrot, B., 1961. Stable Paretian Random Functions and the Multiplicative Variation

of Income. Econometrica 29, 517–543.

57



Michaels, R., Page, B., Whited, T. M., 2019. Labor and Capital Dynamics under Financing

Frictions. Review of Finance 23, 279–323.

Mullahy, J., Norton, E. C., 2024. Why Transform Y? The Pitfalls of Transformed Regressions

with a Mass at Zero. Oxford Bulletin of Economics and Statistics 86, 417–447.

Nikolov, B., Whited, T. M., 2014. Agency Conflicts and Cash: Estimates from a Dynamic

Model. The Journal of Finance 69, 1883–1921.

Novy-Marx, R., 2011. Operating Leverage. Review of Finance 15, 103–134.

Novy-Marx, R., 2013. The other side of value: The gross profitability premium. Journal of

Financial Economics 108, 1–28.

Officer, R. R., 1972. The Distribution of Stock Returns. Journal of the American Statistical

Association 67, 807–812.

Parham, R., 2023. The Difference-of-Log-Normals Distribution: Properties, Estimation, and

Growth. arXiv:2302.02486 [stat.ME] .

Pedroni, P., 2004. Panel cointegration: Asymptotic and finite sample properties of pooled

time series tests with an application to the PPP hypothesis. Econometric Theory 20.

Riddick, L. A., Whited, T. M., 2009. The Corporate Propensity to Save. The Journal of

Finance 64, 1729–1766.

Sagi, J. S., Seasholes, M. S., 2007. Firm-specific attributes and the cross-section of momen-

tum$. Journal of Financial Economics .

Simon, H. A., Bonini, C. P., 1958. The Size Distribution of Business Firms. The American

Economic Review 48, 607–617.

Smith, A., 1776. An Inquiry into the Nature and Causes of the Wealth of Nations. W.

Strahan and T. Cadell, London.

58



Stokey, N. L., Lucas, R. E., Prescott, E. C., 1989. Recursive Methods in Economic Dynamics.

Harvard University Press, Cambridge, MA.

Strebulaev, I. A., Whited, T. M., 2012. Dynamic Models and Structural Estimation in

Corporate Finance. Foundations and Trends in Finance 6, 1–163.

Sun, Q., Xiaolan, M. Z., 2019. Financing intangible capital. Journal of Financial Economics

133, 564–588.

Sutton, J., 1997. Gibrat’s Legacy. Journal of Economic Literature 35, 40–59.

Tobin, J., 1969. A General Equilibrium Approach To Monetary Theory. Journal of Money,

Credit and Banking 1, 15–29.

Uzawa, H., 1969. Time Preference and the Penrose Effect in a Two-Class Model of Economic

Growth. Journal of Political Economy 77, 628–652.

Westerlund, J., 2005. New Simple Tests for Panel Cointegration. Econometric Reviews 24,

297–316.

59


	Introduction
	Model
	The general q-theory model
	Investment function
	Production function: Z-model
	Production function: SX-model
	Production function: LT-model
	Entry and exit

	Analysis of models
	Scale
	Income
	Efficiency
	Income growth
	Returns-to-scale
	Firm growth

	Estimation and simulation of models
	Identification and initial parameter values
	Estimation
	Simulation
	A few puzzles

	Conclusion

