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Abstract

Firm growth and return distributions are heavy-tailed. Accounting for the interplay
of sales and expenses is sufficient to explain this fact without relying on time-varying
volatility or factors external to the firm. Embedding the implied production function
into a standard q-theory model yields novel and specific predictions regarding the
distributions of income, growth, and returns. The predictions are supported by the
data. The model is the first to correctly replicate the distribution of firm income and is
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“There are only two ways to make money: increase sales and decrease costs”

— Fred DeLuca, founder of Subway

1 Introduction

We have known that the statistical distribution of firm growth is heavy-tailed since at least

the work of Ashton (1926), who documents this for the growth of British textile businesses

in the period 1884 − 1924. Most firms experience moderate growth rates, with about half

of firms experiencing a yearly capital growth rate in the ±10% range. But some firms grow

(or shrink) in large jumps. About 1.5% of firms more than double in size in a single year.

These rare or extreme “disasters” and “winners” are far more numerous and economically

consequential than the 0.00015% of firms a Normally distributed growth rate would predict.

Yet we lack a first-principles explanation for the emergence of heavy-tailed firm growth or a

clear statistical representation of its distribution. This work aims to fill this gap.

Much of the interest in the distribution of firm growth in the economic literature stems

from the fact equity returns are themselves just another measure of firm growth. The heavy

tails of growth and returns were studied by Mandelbrot (1960, 1961) and Fama (1963, 1965)

who proposed the family of Stable distributions (also known as Stable-Paretian or Pareto-

Lévy) as a statistical model of firm growth. This distribution was later rejected by Officer

(1972), who concludes that “It may be that a class of fat-tailed distributions with finite

second moments will be found [...] but as yet this remains to be clearly demonstrated.”

The shape of the return distribution is crucial for the coherence of modern portfolio theory

because the Stable distribution lacks finite second moments (our ubiquitous measure of risk),

for the predictions and accuracy of option pricing models, and for the fit of production-based

asset-pricing models to the data.

I show that a simple, intuitive modification to an otherwise standard q-theory model of

the firm — separately accounting for sales and expenses — is sufficient to yield heavy-tailed

firm growth, without appealing to time-varying volatility or factors external to the firm.
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Moreover, the economic model makes a highly specific prediction on the shape of firm

growth distributions, predicting they should distribute as the difference-of-log-Normals. I

show that this prediction is supported by the data and that the obscure difference-of-log-

Normals distribution exhibits a remarkable fit to a plethora of firm outcomes, such as income,

capital growth, income growth, and equity returns, as the model predicts. The fit with equity

returns is outstanding and holds for daily, monthly, yearly, raw, and excess returns in a set

of robustness tests.

Figure 1 displays this fit using data on public US firms during the 50-year period 1970-

2019. Panel (a) present the distribution of capital growth, along with two MLE-fitted distri-

butions: a Normal and a difference-of-log-Normals, with Panel (b) presenting the correspond-

ing q-q plot. Panels (c) and (e) present two equity return distributions: monthly raw and

daily excess returns, respectively, again fitted with difference-of-log-Normals distributions.

The q-q plots again exhibit a nearly perfect fit.

The contribution of the paper is not limited to its asset-pricing implications. I show

that the novel production function implied by separately modeling sales and expenses —

a difference-of-log-linears production function, itself a generalization of the log-linear (or

Cobb-Douglas) production function — has several desirable properties beneficial for dynamic

models of corporate finance. In that, the paper follows in the tradition of, e.g., Epstein and

Zin (1991); Campbell and Cochrane (1999) and Bansal and Yaron (2004).

First, the model resolves the critique of Gorbenko and Strebulaev (2010); Strebulaev

and Whited (2012) regarding the “highly unrealistic” lack of losses in dynamic firm models.

Strebulaev and Whited (2012) note, in the context of transitory shocks leading to losses,

that “mathematical problems [...] have not been solved satisfactorily even for the simplest

cases.” In contrast, the model presented here enables a simple and tractable treatment of

losses that can be used when modeling firm leverage and bankruptcy decisions. Second, the

difference-of-log-linears production function gives rise to extended and internally consistent

definitions for common concepts such as firm scale, efficiency, returns-to-scale, and income
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Fig. 1. Firm growth distributions. Panel (a) presents the growth of capital (total assets),
with MLE-fitted Normal and DLN distributions, for a set of 143K firm-year observations
from 1970-2019. Panel (b) presents the respective q-q plots. Panels (c) and (e) present the
monthly raw and daily excess equity returns for 2M and 5M observations, respectively, with
MLE-fitted DLN distributions. Panels (d) and (f) present the respective q-q plots.
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growth. Third, I show that structural estimation of firm models based on this production

function is significantly simplified relative to existing models of firm dynamics due to the

observability of sales and expenses. For these reasons, I propose the model as a foundational

building block when writing models exploring other aspects of the firm.

My approach is by no means a first attempt at explaining the distribution of firm growth.

Gibrat (1931) introduces the log-Normal as the dominant distribution in measuring firm

size, based on a simple argument, later named “the multiplicative Central Limit Theorem”

(CLT). This prediction was confirmed for firms, cities, and other proportionally-growing

entities. Gibrat, however, used the CLT to reason that firm growth should be Normally

distributed and homoscedastic in scale — two predictions that have later been shown to

fail in the data. Following the failure of the Stable distribution to describe firm growth,

discussed above, the Laplace distribution was proposed (and later rejected as well) as a

purely statistical model without an economic justification by Mantegna and Stanley (1995);

Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass, Salinger, and Stanley (1996); Bottazzi

and Secchi (2003).

Prior theoretical models attempt to explain the mechanics of firm growth. Notable ex-

amples include Simon and Bonini (1958); Lucas (1978); Klette and Kortum (2004) and the

more recent works of Bottazzi and Secchi (2006); Buldyrev, Growiec, Pammolli, Riccaboni,

and Stanley (2007); Luttmer (2011). The early works counter-factually yield firms with

Normal growth, while the latter works aim to replicate Laplace-distributed growth. They

do so by positing an economy with a scarcity of opportunities, in which heavy-tailed growth

stems from factors external to the firm. The model presented here, in contrast, is a simple,

intuitive, and straightforward extension of the workhorse q-theory model, and it predicts a

specific novel distribution confirmed by the data.

The paper proceeds as follows: Section 2 presents a q-theory model of firm dynamics,

including entry and exit, using the traditional log-linear and the extended difference-of-log-

linears production functions. Section 3 analyzes the theoretical implications of the models
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and confronts these implications with the data. The section analyzes implications for (i)

income; (ii) scale and efficiency (iii) income growth; (iv) returns-to-scale; and (v) capital

and value growth. Section 4 presents a structural estimation and a simulation of the models.

The q-theory model with the new production function replicates the empirical firm data

qualitatively (i.e., in distributional form) as well as quantitatively (i.e., the moments of said

distributions). I provide concluding remarks in Section 5.

2 Models

Since the early works of Lucas (1967), Tobin (1969), Uzawa (1969), and especially the

seminal work of Hayashi (1982), q-theory has become the canonical workhorse of firm mod-

eling in the corporate finance literature.1 The neo-classical q-theory model posits a value-

maximizing firm facing a dynamic investment-dividend decision subject to adjustment costs.

The value-maximizing firm invests up to the point where the marginal benefit of investment

equals the marginal cost of investment, both then denoted marginal-q. The next subsection

presents a general version of the q-theory model that includes entry and exit but abstracts

from the specific forms of the: (i) investment function; (ii) production function; (iii) stochas-

tic dynamics; and (iv) entry and exit mechanics. The following four subsections discuss each

facet, presenting the relevant functional and stochastic forms.

2.1 The general q-theory model

At the beginning of every period, a representative value-maximizing firm observes its

endogenous capital stock for the period Kt > 0 and exogenous (i.e., stochastic) productivity

Zt > 0.2 The firm first chooses whether to remain for another period (denoted αt = 1)

1Recent examples include: Hennessy and Whited (2005), Hennessy and Whited (2007), Liu, Whited, and
Zhang (2009), Livdan, Sapriza, and Zhang (2009), Riddick and Whited (2009), Bolton, Chen, and Wang
(2011), DeAngelo, DeAngelo, and Whited (2011), Lin (2012), Belo, Lin, and Vitorino (2014), Nikolov and
Whited (2014), Li, Whited, and Wu (2016), Belo, Li, Lin, and Zhao (2017), Michaels, Page, and Whited
(2019), Sun and Xiaolan (2019), Falato, Kadyrzhanova, Sim, and Steri (2021).

2Both K and Z may be vectors in the general case.
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or exit (αt = 0). Firm owners receive some non-negative payoff Vexit (Kt, Zt) ≥ 0 upon

exit. A remaining firm then chooses an investment level It = I (Kt+1, Kt) for the period, or

equivalently an end-of-period capital level Kt+1, with negative investment values implying

the proceeds from capital sale. The firm produces income (sales net of all expenses) Yt =

Y (Kt, Zt), and dispenses Dt = D (Kt+1, Kt, Zt) = Yt − It to owners. All payoffs accrue at

the beginning of the period for simplicity.

The value of the firm Vt = V (Kt, Zt) is the expected present value of all dispensations.

This value is recursively defined by the Bellman equation

Vt = max
Kt+1,αt

{
(1− αt) ·Vexit (Kt, Zt) + αt · (D (Kt+1, Kt, Zt) + β · Et [V (Kt+1, Zt+1)])

}
(1)

with 0 < β < 1 the time discount parameter, such that β = (1 + r)−1, and r > 0 is the cost

of capital for the firm.

The investment decision of a remaining firm can be characterized by equating the benefit

and cost of a marginal unit of investment. This implies choosing Kt+1 such that

β · Et [V′1 (Kt+1, Zt+1)] = −D′1 (Kt+1, Kt, Zt) = I′1 (Kt+1, Kt) (2)

where X′j() indicates the derivative of the function X() w.r.t its jth argument. The R.H.S

of Equation 2 is the marginal cost today of one extra unit of next period capital, and the

L.H.S the discounted expected marginal benefit of the extra unit. The value of both is the

marginal-q of the firm at period t.

Denote the investment policy function of a remaining firm prescribed by Equation 2 to

be Kt+1 = Ψt = Ψ(Kt, Zt).
3 It is useful to define the exit (or bankruptcy) threshold of the

3That the function Ψ() exists under mild conditions on the functions Y(), I(), and Vexit (Kt, Zt) is a
standard result. See e.g. Stokey, Lucas, and Prescott (1989).
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firm in period t,

Bt = B (Kt, Zt) = D (Ψt, Kt, Zt) + β · Et [V (Ψt, Zt+1)]−Vexit (Kt, Zt) (3)

as the difference between the optimal values conditional on remaining and exiting. The

firm’s exit policy is to remain when it is above the bankruptcy threshold (Bt ≥ 0) and exit

otherwise.

We can now combine Equation 2 with the envelope condition to write the remaining

firm’s full first-order condition (f.o.c) for capital as

β ·Et
[
(1− αt+1) ·Vexit′

1 (Ψt, Zt+1) + αt+1 · (Y′1 (Ψt, Zt+1)− I′2 (Ψt+1,Ψt))
]

= I′1 (Ψt, Kt) (4)

which in turn characterizes the function Ψ (Kt, Zt). The equation equates the cost of a

marginal unit of extra capital with the discounted marginal benefits from higher exit value,

higher production, and lower future investment costs.

Additionally, it is useful to define the function Φ(Zt) to be the fixed point of the function

Ψ (Kt, Zt) in the first input, such that Φt = Φ(Zt) = Ψ(Φ(Zt), Zt). I.e., Φt is the steady-

state capital level corresponding to Zt. As usual, the functions cannot be specified in closed

form and require numerical evaluation.

2.2 Investment function

The investment function I (Kt+1, Kt) determines the investment level required to move

from current capital level Kt to next-period capital level Kt+1. It embeds assumptions on

capital depreciation and capital adjustment costs. Throughout, I will be using the investment

function

Iexp (Kt+1, Kt) = (Kt+1 −Kt) · exp (γ · dlog (Kt+1)) + δ ·Kt (5)
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with dlog(Kt+1) = log(Kt+1)− log(Kt) = kt+1− kt , 0 ≤ δ ≤ 1 the capital depreciation rate,

and γ ≥ 0 an adjustment parameter.

Note that when γ → 0, Iexp simplifies to the perpetual inventory formula with no adjust-

ment costs

Itriv (Kt+1, Kt) = (Kt+1 −Kt) + δ ·Kt = Kt+1 − (1− δ) ·Kt (6)

and the firm’s f.o.c from Equation 4 simplifies to the well-known equality between the ex-

pected marginal product of capital and the user cost of capital, adjusted for exit

Et
[
(1− αt+1) ·Vexit′

1 (Kt+1, Zt+1) + αt+1 ·Y′1 (Kt+1, Zt+1)
]

= r + δ (7)

Furthermore, without adjustment costs, the firm immediately adjusts to the optimal capital

level Φ(Zt) every period, such that Φ(Zt) = Ψ(Kt, Zt) ∀Kt, and marginal-q ≡ 1. In this

simplified case that is nevertheless useful as a benchmark, the policy function of the firm

can be found without value- or policy-function iterations. This fact will be useful when

considering the implications of the models later.

Upon inspection, Iexp is closely related to the traditional quadratic adjustment form

common to the literature cited above, often written as

Iquad (Kt+1, Kt) = (Kt+1 −Kt) + γ ·
(
Kt+1

Kt

− 1

)2

·Kt + δ ·Kt (8)

We can see the relation between the two functions by noting the parenthesis in Equation 8

is simply the per-period capital growth in percentage terms, while Equation 5 uses growth

in log-point terms. The similarity and difference between the investment functional forms

can be inspected in panels (a)-(c) of Figure 2.4 In all panels, the current capital level of the

firm is Kt = 100 and the depreciation rate is δ = 4%. The panels present Itriv, Iquad, and

Iexp with low, medium and high adjustment costs (γ ∈ {0.1, 0.5, 1.5}), respectively.

4Also see https://kn.owled.ge/InvestFuncs for an interactive version.
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2.3 Production functions

The main goal of this paper is to compare and contrast the canonical neo-classical log-

linear (LL) production function with a difference-of-log-linears (DLL) production function

that captures the interplay of sales and expenses. The canonical production function can be

written as

Yz (Kt, Zt) = Zt ·Kθz
t = exp (zt + θz · kt) (9)

with returns to scale parameter 0 < θz < 1 and with lower-case variables denoting log values

as usual. The q-model generally abstracts from labor, assuming it is elastically adjustable

within periods. Wages and other expenses are already accounted for, as Yz (Kt, Zt) models

income, i.e., sales minus expenses. Models following this production function are denoted

Z-models.

The second production function I consider models income explicitly using its economic

definition — the difference between sales and expenses — possibly the most fundamental of

accounting identities,

Ysx (Kt, St, Xt) = St ·Kθs
t︸ ︷︷ ︸

Sales≡St

− Xt ·Kθx
t︸ ︷︷ ︸

Expenses≡Xt

= exp (st + θs · kt)− exp (xt + θx · kt) (10)

with 0 < θx, θs < 1 returns to scale parameters in sales and expenses, respectively. In a

slight abuse of notation, firm sales during period t are denoted St and firm expenses Xt.

The function Ysx() is now a function of three variables — the capital stock Kt and two

stochastic exogenous variables, St and Xt, controlling the dynamics of sales and expenses.

I.e., in this model, Zt is vector-valued. Models following this production function are denoted

SX-models.

Panels (d)-(f) of Figure 2 present examples of the Ysx() functional form.5 Panel (d)

presents the (logs of) sales, expenses, income, and net income (income minus user-cost of

capital) of a firm, as functions of the firm’s (log) capital level k, at some given parameter

5Also see https://kn.owled.ge/ProdFuncs for an interactive version.
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values. Panel (d) is hence in log-log scale. In this scale, sales and expenses are both linear

in k, as is made clear by the last part of Equation 10. Their difference (i.e., income) is,

however, negative until firm scale is high enough for sales to overtake expenses. Considering

net income, Panel (d) demonstrates the firm is subject to Goldilocks conditions — it has

positive net income for a limited range of capital levels and has negative net income otherwise.

Because negative incomes play an important role in our analysis, it is useful to change

the Y-axis of Panel (d) from log to Inverse Hyperbolic Sine (asinh) scale, so negative values

are better observed. Panel (e) hence repeats the presentation of Panel (d) but with asinh-

transformed Y-axis. Finally, Panel (f) repeats the presentation of Panel (e), but for a higher

value of x. I.e., it considers what will happen to the income of a firm if it faces a positive

(un)productivity shock to the stochastic variable x. Geometrically, increasing the value of

x simply shifts the expenses line (dotted red line) upwards in panel (e), as it controls the

intercept in the (log-log) equation defining expenses. The outcome is to decrease income

(and net income) at every capital level. In fact, the firm’s net income is now negative at all

capital levels.

2.4 Stochastic dynamics

We now define the stochastic dynamics of the productivity state variables Z and S,X,

respectively. The Z process is assumed to follow the canonical AR(1) in logs. I.e. z = log(Z)

follows

zt+1 = (1− ρz) · µz + ρz · zt + εZt+1 (11)

with persistence 0 < ρz < 1 and mean µz. The i.i.d innovations follow

εz ∼ N(0, σ2
z) (12)

with σz > 0 the standard deviation of εz.

Before proceeding, it is worth contemplating the economic meaning of the exogenous
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Fig. 2. Functional forms. This figure presents facts about the functional forms used for
investment and production. Panels (a)-(c) graph the total investment (incl. adjustments)
required to move from Kt = 100 to an arbitrary Kt+1, with δ = 4%. The solid green line
is Itriv(), the dashed red is Iquad(), and the dotted blue is Iexp(). Panels (a)-(c) present low
(γ = 0.1), medium (γ = 0.5), and high (γ = 1.5) adjustment costs, respectively. Panels
(d)-(f) graph the sales (dotted blue), expenses (dotted red), income (solid green), and net
income (income minus user-cost of capital, dashed orange) of a firm as functions of its (log)
capital stock k when using the Ysx() production function. The X-axis in panels (d)-(f) is
logarithmic, as is the Y-axis in panel (d). The Y-axis in panels (e)+(f) is in asinh scale.
Panels (d)+(e) use the parameters s = 4.83, x = 4.94, while panel (f) modifies x = 5.1.
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productivity process Z. What determines the factor-productivity of the firm? It is a function

of the “skill, dexterity, and judgment with which labor is applied,” as in Smith (1776), or

of the firm’s production technology, cost structure, managerial talent, market power, and

a host of other components, including luck. In that sense, Z is partly endogenous. Of

course, all firms would prefer to produce as much income as possible from a given amount of

capital K. Put differently, all firms would like to have as high a Z as possible. Firms hence

optimize the components of Z under their control, and as a result, achieve (log) productivity

µZ on average. But firms differ in their ability to achieve a high Z, and the differences are

persistent. Zt hence represents the current productivity of the representative firm, given its

optimizing behavior on the components of Z. In this way, Z is the usual measure of our

ignorance regarding the firm, as in Abramovitz (1956).

The S,X process is similarly assumed to follow a joint-AR(1) in logs. I.e., s = log(S)

and x = log(X) follow

st+1 = (1− ρs) · µs + ρs · st + εst+1

xt+1 = (1− ρx) · µx + ρx · xt + εxt+1

(13)

with persistence 0 < ρs, ρx < 1 and mean µs, µx. The i.i.d innovations follow the bi-variate

Normal εst+1

εxt+1

 ∼ N


0

0

 ,
 σ2

s σsx

σsx σ2
x


 (14)

with σsx = ρsx · σs · σx for σs, σx > 0 and −1 < ρsx < 1.

Let us again contemplate the economic meaning of S,X. Clearly, all firms would prefer

S → ∞ and X → 0. On average, however, the representative firm achieves sales (log)

productivity µs and expenses (log un)productivity µx, after taking all profitable moves to

jointly optimize both S and X. Note that εs, εx are likely correlated. Consider e.g. a firm

encountering a positive demand shock, and finding it profitable to increase sales by working
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a third shift in its factory to supply the newfound demand. The firm can increase S (the

sales productivity of a unit of capital — here, the factory), but to do so, it will also need to

increase X due to extra payments to labor for working a third shift and various other extra

expenses. Hence, it is likely ρsx > 0.

2.5 Entry and exit

To close the Z- and SX-models, we still need to define the mechanics of entry and exit.

For exit, I use the simple assumption

Vexit (Kt, Zt) = Vexit (Kt, St, Xt) = ν ·Kt (15)

with a capital fire-sale rate 0 < ν < 1. This implies firms can fire-sell their capital stock for

a share ν of its value and exit. To maintain a constant measure of firms when simulating

the model, a new firm is “born” every time a firm exits. The new firm’s state is drawn from

the ergodic distribution of firm states in the simulation.

3 Analysis of models

The SX-model of the firm, using the DLL production function, makes specific predictions

on various firm outcomes. In this section, I review these predictions and test them in the

data. I also compare these predictions with those of the Z-model using the LL production

function, when appropriate.

The data analyzed cover all public US firms in the 50-year period 1970-2019, and in-

clude 165, 000 firm-year observations. Data are predominantly derived from the yearly

CRSP/Compustat data set. For some tests related to equity returns I use higher-frequency

CRSP data. All dollar amounts are normalized by yearly nominal GDP, in 2019 terms.

Table 1 defines all data panels analyzed in terms of Compustat items. Each data panel

is identified throughout with a two-letter mnemonic. I mainly rely on the sources and uses
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identity

sales︸︷︷︸
SL

− expenses︸ ︷︷ ︸
XS

= income︸ ︷︷ ︸
CF

= total net dividends︸ ︷︷ ︸
DI

+ total net investment︸ ︷︷ ︸
IT

(16)

to define expenses as dissipated sales (i.e., sales - income, SL-CF). This guarantees all ex-

penses, including cost of goods, selling, general, administrative, taxes, and various other

“special” and “one-time” expenses are fully accounted for. I verify all results with a tradi-

tional top-down definition as well.

Table 1
Data definitions

This table defines all data items used. The first column is the name of each data item and the
second is the mnemonic used throughout. The third column is the mapping to Compustat
items or previously defined mnemonics, and the fourth is a short description. The core
accounting identity used is the sources and uses equation: income = sales - expenses = total
dividends + total investment, with dividends broadly defined below. The last two data items
are alternative definitions used for comparability with previous work. The “L.” is the lag
operator.

Name XX Definition Description

Equity value EQ mve market value, year end
Debt value DB lt book total liabilities
Total value VL EQ + DB equity + debt
Equity dividends DE dvt + (prstkc - sstk) dividends + net repurchase
Debt dividends DD xint + (L.DB-DB) interest paid + decrease in debt
Total dividends DI DE + DD to equity and debt
Total capital KT at total assets (tangible)
Depreciation DP dp of tangible capital
Total investment IT KT - L.KT + DP growth in net assets
Income CF DI + IT bottom-up free cash flows
Sales SL sl total sales
Expenses XS SL - CF dissipated sales
Expenses (alt.) XA cogs + xsga + txt top-down definition
Income (alt.) CA SL - XA top-down definition

The following sub-sections review model predictions and data outcomes for (i) income;

(ii) scale and efficiency; (iii) income growth; (iv) returns-to-scale; and (v) capital and value

growth.
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3.1 Income

What is the statistical distribution of income CF? Firm income, often called cashflows,

is of utmost importance in both major branches of financial research: corporate finance and

asset pricing. Cashflows are the departing point for corporate finance and production-based

asset pricing models. It is hence quite surprising that the statistical distribution of income

has seen such scant interest in the finance literature.

In typical corporate finance models, income is modeled using a LL production function in

which zt follows an AR(1) process with Normal innovations (i.e., they are Z-models). Recall

that the ergodic distribution of any AR(1) process is Normal, under mild assumptions. This

implies a log-Normal distribution of productivity Zt, income Yz, and capital Kt in the Z-

model. This modeling choice, however, counter-factually yields firms with strictly positive

income. The lack of negative income in such models ignores a critical feature of the profit-

and-loss mechanism of firm dynamics — namely, losses.

Conversely, here we model income as sales minus expenses using the DLL production

function Ysx. The ergodic distributions of st and xt, the stochastic processes governing

sales and expenses, are similarly Normal, before considering the impact of exit. This implies

that sales and expenses should have (approximately) log-Normal distributions, and in turn,

implies that income should distribute as the difference between two correlated log-Normal

RVs.

The difference-of-log-Normals (DLN) distribution arises due to a simple set of statistical

facts: (i) both the sum and difference of two Normal RVs are generally Normal under mild

assumption; (ii) the sum of two log-Normal RVs is best approximated by a log-Normal RV;

and (iii) the difference of two log-Normal RVs is decidedly not log-Normal. For one, the

log-Normal is strictly positive, while the difference-of-log-Normals is supported on the entire

real line R. Further, the DLN exhibits log-Normal (i.e., heavy) tails in both the positive

and negative directions, yielding a distributional shape quite different from the Normal

“Gaussian bell curve.” Parham (2023) describes the emergence of the DLN distribution in
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general economic data and fully characterizes it, deriving its PDF, CDF, central moments,

and estimators for the distribution parameters given data, as well as verifying them in

extensive Monte-Carlo simulations.

Figure 3 presents the relevant data distributions. Panels (a)-(c) present the distribu-

tions of (log) capital KP, sales SL, and expenses XS in the data, fitted with skew-Normal

distributions. The fit is excellent, and three different goodness-of-fit tests do not reject the

skew-Normal for these firm outcomes. This result is in accordance with the Normal ergodic

distribution of AR(1) processes. The most puzzling thing about Panels (a)-(c) is how un-

puzzling they are, given the extensive literature on the distribution of firm size, here shown

to simply be skew-Normal (in logs).

Panel (d) of Figure 3 then presents a truncated view of the income distribution, in the

limited range between −50M and +100M. Income clearly presents exponential tails in both

the positive and negative directions, explaining the need for truncation. The common way of

dealing with exponential tails, applying a log transform, cannot be used due to the negative

values involved. To deal with the double-exponential nature of the tails, Panel (e) then

presents the Inverse Hyperbolic Sine (asinh) of income, untruncated. The asinh transform

can simply be thought of as a log transform, but in both the positive and negative directions,

and allows us to view the entire distribution. Panels (d) and (e) are also overlaid with MLE-

fitted DLN distributions, exhibiting excellent fit, as do the q-q figure in Panel (f) and the

formal goodness-of-fit tests in the CF and CA columns of Table 2. Income is not rejected

as DLN using the goodness-of-fit tests. The Stable and Laplace distributions — the other

distributions previously considered in the context of firm growth — are rejected by the data.

The DLN also handily beats both in log-likelihood-based horse races for income, using the

AIC and the BIC.

Finally, panel (g) of Figure 3 presents a closer look at the distribution of income, by

considering the dependence of (asinh) income on firm (log) capital KT. I first split the data

into 49 equal bins, based on firm capital, ignoring the top and bottom 1% of observations,
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Fig. 3. Firm size and income distributions. This figure presents firm size and income
distributions. Panels (a)-(c) present (log) capital, sales, and expenses, overlaid with skew-
Normal distributions. Panel (d) presents the (truncated) distribution of CF in linear scale
while Panel (e) presents the untruncated distribution in asinh scale, both overlaid with
MLE-fitted DLN distributions. Panel (f) presents the q-q plot corresponding to Panel (e).
Panel (g) presents the dependence of income on capital, by presenting the (10,25,50,75,90)th

percentiles of asinh(CF), conditional on the sign of CF, for 49 KT scale bins. Panel (h)
presents income growth, given by Equation 22, and Panel (i) presents income intensity
(average product of capital), both overlaid with MLE-fitted DLN distributions.
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Table 2
Distributional tests

This table presents the results of tests of distributional form for income (CF), alt. income
(CA), income growth (dCF), APK (CF/L.KT), capital growth (dKT), yearly total value
growth adjusted for cash dispensations (dVT), yearly raw equity returns (dEQY ), monthly
excess equity returns (dEQex

M), daily excess equity returns (dEQex
D ), and daily excess equity

returns w/ time and scale f.e. (dEQadj
D ). K-S is a Kolmogorov–Smirnov test; C-2 is a binned

χ2 test with 50 bins; A-D is an Anderson-Darling test. Panels (a)-(c) report the test statistics
and their p-values rejecting the distribution for the Stable, Laplace, and DLN, respec-
tively. Panel (d) reports the relative likelihoods for each distribution using the AIC and BIC.

CF CA dCF APK dKT dVT dEQY dEQex
M dEQex

D dEQadj
D

Panel (a): Stable

K-S 0.034 0.038 0.014 0.028 0.011 0.015 0.017 0.015 0.014 0.015
p-val 0.022 0.019 0.046 0.027 0.055 0.044 0.040 0.045 0.046 0.043
C-2 647 >999 120 379 91 179 236 195 201 204
p-val 0.012 0.000 0.035 0.018 0.040 0.028 0.024 0.027 0.027 0.027
A-D 19.48 50.97 5.86 19.99 3.79 6.50 8.54 6.67 6.16 6.70
p-val 0.025 0.014 0.041 0.025 0.047 0.039 0.035 0.039 0.040 0.039

Panel (b): Laplace

K-S 0.364 0.386 0.073 0.288 0.027 0.017 0.027 0.026 0.051 0.027
p-val 0.000 0.000 0.006 0.000 0.027 0.041 0.028 0.028 0.012 0.027
C-2 >999 >999 >999 >999 290 118 134 244 761 182
p-val 0.000 0.000 0.002 0.000 0.022 0.035 0.033 0.024 0.010 0.028
A-D >999 >999 105.75 >999 18.72 7.75 9.21 19.38 62.69 17.40
p-val 0.000 0.000 0.007 0.000 0.025 0.037 0.034 0.025 0.012 0.026

Panel (c): DLN

K-S 0.003 0.003 0.007 0.005 0.006 0.004 0.004 0.003 0.013 0.007
p-val 0.138 0.149 0.074 0.104 0.087 0.108 0.113 0.148 0.050 0.080
C-2 8 12 59 15 17 14 10 5 60 21
p-val 0.142 0.111 0.049 0.096 0.089 0.099 0.123 0.353 0.048 0.078
A-D 0.21 0.18 1.11 0.39 0.50 0.45 0.38 0.10 1.74 0.47
p-val 0.117 0.123 0.070 0.095 0.089 0.091 0.096 0.148 0.061 0.090

Panel (d): Relative likelihood tests

AIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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such that each bin contains 2% of the observations. For each bin, Panel (g) plots the

(10, 25, 50, 75, 90)th percentiles of (asinh) income, separately for positive and negative values.

Larger firms earn and lose more money than smaller firms, so the “middle” of the panel

hollows as firm scale rises. This closer look at income is an excellent segue to the next set

of model implications regarding firm scale and efficiency.

3.2 Scale and efficiency

An important feature of the DLL production function is that it can be factored into

the multiplication of an exponential function and a Hyperbolic Sine (sinh) function — the

hyperbolic equivalent of moving from Cartesian to Polar coordinates.6 We can hence write

Ysx (Kt, St, Xt) = 2 · exp (λt) · sinh (τt)

λt =
st + xt

2
+
θs + θx

2
· kt = λ̂t + θλ · kt = log(

√
Sales · Expenses)

τt =
st − xt

2
+
θs − θx

2
· kt = τ̂t + θτ · kt = log(

√
Sales/Expenses)

(17)

which defines the scale λ ∈ R and the efficiency τ ∈ R of a firm’s income. Note that

λ is the mid-point between log sales and log expenses, and τ is the (equal) distance from

λ to log sales and log expenses. The inverse mapping is hence sales = exp (λ+ τ) and

expenses = exp (λ− τ). Clearly, the sign of firm income depends on the sign of τ , and the

magnitude of firm income primarily depends on λ, with a small role for τ .

Figure 4 presents a heat map of the income scale and efficiency for all observations in

the data. We can see the vast majority of firm observations (about 86%) have efficiency

in the −0.1 to 0.2 range, with a clear ridge around τ = 0.033. Scale is approximately

Normally distributed and centered around λ = 6.5. The profit/loss line at τ = 0 appears

6This also rationalizes the ad-hoc use of the asinh transform above.
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to significantly impact firms, as we would expect. We can further see that the location

(though not the dispersion) of efficiency τ is nearly independent of scale λ. When efficiency

is 0, expenses equal sales and income is zero, for all scale values. When scale is λt = 6.5

and efficiency is τt = 0.033, the firm has sales of exp(6.5 + 0.033) = $687M, expenses of

exp(6.5− 0.033) = $644M, and income of $43M.

(a) Firm scale and efficiency heat-map

Fig. 4. Firm scale and efficiency. This figure presents a heat map (two-dimensional his-
togram) of the scale and efficiency of US public firms in the 50-year period 1970-2019. The
horizontal axis depicts firm scale λt = log(

√
Sales · Expenses), and the vertical axis presents

firm efficiency τt = log(
√

Sales/Expenses). Zero efficiency (i.e., the profit/loss line) is marked
by the white horizontal line.

This decomposition explains the “hollow middle” pattern in panel (g) of Figure 3. Large

firms make or lose large amounts of money, but seldom small amounts of money, due to

the magnifying power of scale λ. The model further implies firm scale should be correlated

and co-integrated with firm (log) capital and other measures of firm scale such as (the logs

of) equity value and sales. Panels (a) and (b) of Table 3 show this is indeed the case, with

high correlations between the various co-integrated scale measures. We can hence see the

commonly used ratio of income to capital (i.e., return on assets ROA, or the average product
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of capital APK) as a proxy for the easily calculable firm efficiency τ .

Firm efficiency is, in fact, the core difference between the Z- and SX-models. Note that

Equation 10, defining the SX production function, collapses into Equation 9, defining the

Z production function, if (i) the returns-to-scale in capital are equal for sales and expenses

(θs = θx). In that case, we can write Zt = St − Xt and return to the formulation in

Equation 9, though without the assumption Zt > 0. This assumption can be maintained

if we further assume (ii) expenses are always lower than sales (St > Xt ∀t). The canonical

Z-model production function implicitly makes both assumptions about the dynamics of the

firm.

We can make these assumptions explicit by rewriting the Z-model in Equation 9 to

represent income as a share of sales,

Ys̃

(
Kt, S̃t

)
= (1− τ̃) · S̃t ·Kθs̃

t = exp (log (1− τ̃) + s̃t + θs̃ · kt) (18)

with expense ratio 0 ≤ τ̃ ≤ 1. The expense ratio measures how much of firm sales is diffused

as expenses, or the expected X/S ratio, which is simply a transformation of firm efficiency

τ .7 Put differently, the SX-model can be viewed as endogenizing τ , and allowing τ < 0 or

τ̃ > 1, rather than assuming a fixed value for τ as is done in the Z-models.

3.3 Income growth

The traditional definition of growth (e.g., the difference in consecutive logged values) has

hitherto been poorly defined when applied to income due to the existence of negative income

values that cannot be logged. Consider: What was the income growth of a firm with $100M

of losses last year and $120M of profits this year? Parham (2023) extends the instantaneous

growth definition of Barro and Sala-I-Martin (2003) to RVs possibly taking negative values,

yielding dYt/dt
|Yt| . The absolute value in the definition of growth is necessary to maintain the

7With τ̃ = exp (−2 · τ).
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Table 3
Scale - Descriptive statistics

Panel (a) presents the correlations between the various firm scale measures (λ and the logs of
capital, firm value, equity value, sales, and expenses). Panel (b) presents the results of three
cointegration tests between all scale measures, with the first two tests from Pedroni (2004),
and the third from Westerlund (2005). The first two test the null of no cointegration vs. the
alternative that all panels are cointegrated while the third tests the null vs. the alternative
that some panels are cointegrated. Tests are conducted by decade, on the available balanced
sample of firms within each decade. Panel (c) presents regressions of income growth (CFt+1

- CFt)/abs(CFt) on changes in firm scale dλ = λt+1 − λt, changes in firm efficiency dτ =
τt+1 − τt, and percent changes in firm efficiency %τ = (τt+1 − τt)/τt. All regressions include
firm and year fixed-effects, w/ N=165K.

Panel (a): Scale correlations

λ KT VL EQ SL XS

λ — .929 .880 .797 .995 .995
KT .929 — .961 .883 .928 .921
VL .880 .961 — .960 .878 .874
EQ .797 .883 .960 — .796 .792
SL .995 .928 .878 .796 — .982
XS .995 .921 .874 .792 .982 —

Panel (b): Scale cointegration tests

Phillips-Perron t p-val Dicky-Fuller t p-val Variance ratio p-val
70’s 51.12 <0.001 -65.76 <0.001 17.42 <0.001
80’s 57.38 <0.001 -57.41 <0.001 21.32 <0.001
90’s 58.97 <0.001 -65.87 <0.001 22.05 <0.001
00’s 62.51 <0.001 -75.13 <0.001 21.67 <0.001
10’s 58.97 <0.001 -60.87 <0.001 22.57 <0.001

Panel (c): determinants of income growth

(1) (2) (3) (4)

dλ 2.264 -5.19
s.e .8550 3.920
dτ 16.14 21.68
s.e 1.430 6.557
%τ .5036 .5036
s.e .0007 .0007

within-R2 .8022 .0000 .0001 .8020
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direction of growth when beginning from negative values (i.e., positive growth will lead to

more profit or at least fewer losses).

The first way to use this equation is to apply it to firm income directly, measuring the

generalized percentage growth in income

dYt/dt

|Yt|
≈ (Yt+1 − Yt) /|Yt| (19)

with the approximation stemming from using the forward discrete difference for the time

derivative. A second way is to assume Y follows the LL production function (i.e., the Z-

model), in which case Yt ≥ 0 and

dYt/dt

|Yt|
=
Yt ·

(
dzt
dt

+ θz · dktdt
)

Yt
≈ (zt+1 + θz · kt+1)− (zt + θz · kt) = log(Yt+1)− log(Yt) (20)

yielding the familiar difference-in-logs growth measure.

The Z-model implies income growth is approximately Normally distributed. The log-

point growth of income in the Z-model can be written as

dlog(Yt+1) = log(Yt+1)− log(Yt) = (1− ρz) · (µz − zt) + θz · (kt+1 − kt) + εzt+1
(21)

with zt distributing Normally as a property of the AR(1) process, εzt+1 distributing Normally

by Equation 12, and dlog(Kt+1) = kt+1 − kt difficult to pin down analytically in the general

case. But prior work, as well as steady-state analysis and simulation results discussed below,

indicate dlog(Kt+1) distributes Normally as well in the Z-model. This implies income growth

is Normally distributed in the Z-model. Note the dlog(Yt+1) income growth measure derived

from the Z-model’s LL production function fails when one of the periods has negative income.

The third way to define income growth is to assume Y follows the SX-model’s DLL
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production function, in which case

dYt/dt

|Yt|
≈ St · dlog (St+1)− Xt · dlog (Xt+1)

|St − Xt|
(22)

which expresses income growth as a weighted average of sales growth and expenses growth.

A fourth way, equivalent to the third but yielding considerably more intuition, is to define

income growth using scale and efficiency, in which case

dYt/dt

|Yt|
=

2 · exp (λt) ·
(
dλt
dt
· sinh (τt) + dτt

dt
· cosh (τt)

)
2 · exp (λt) · |sinh (τt)|

= sgn(τt) ·
[
dλt
dt

+
dτt
dt
· 1

tanh (τt)

]
≈ sgn(τt) ·

[
(λt+1 − λt) +

τt+1 − τt
τt

] (23)

with sgn() the sign function. The approximation is now due to two reasons: the forward

discrete difference, as usual, and replacing tanh(τt) with τt, which is valid because firm

efficiency in the data is clustered tightly in the region where tanh(τt) ≈ τt.

Put differently, the expression for the growth of firm income in the SX-model includes

both an expression for log-point growth in firm scale and an expression for the percent growth

in firm efficiency, added to the log-point growth in scale. Explosive income growth (or the

heavy tails of income growth) occurs due to operational leverage, or a low “base rate” in τ

(i.e., τt close to zero), leading to high measured growth in income. The correlation in the

data between the SX-based growth measure from Equation 23 and the generalized percentage

growth of income from Equation 19 is above 0.97. Furthermore, nearly all variation in income

growth in the data stems from the dynamics of τ and the percentage growth in τ term, rather

than from the dynamics of λ, as Panel (c) of Table 3 unequivocally demonstrates.

As an example of the impact of operational leverage, consider a firm with $1B in sales and

$950M in expenses during period t. Firm scale is then λt = 6.88 and firm efficiency is τt =

0.026, both close to the median values observed in the data. First, assume that in period t+1

the firm increases both sales and expenses by 10% to $1.1B and $1.045B, respectively. This
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means λt+1 = 6.98, 0.1 log-units higher, and τt = 0.026 is the same. Equation 23 will yield

income growth of 0.1, the same as percentage income growth 55/50−1 = 10%. Alternatively,

assume that in period t+ 1 the firm increases sales by 10% to $1.1B, but decreases expenses

by 10% to $855M . This means now λt+1 = 6.88, the same as λt, but τt+1 = 0.126 is 0.1

log-units higher. Equation 23 yields income growth of (0.126− 0.026)/0.026 = 3.9 log-units,

equal to the percent growth of income at 245/50−1 = 390%. With income exhibiting heavy-

tailed growth, we would expect firm value to exhibit heavy-tailed growth as well. Firm value

is simply the NPV of future income, so rapid growth in income should propagate to rapid

growth in value.

It is difficult to analytically pin down the heavy-tailed distribution of income growth

resulting from the SX-model. Nevertheless, Panel (h) of Figure 3 presents the distribution

of income growth, as defined by Equation 23, in the data along with an MLE-fitted DLN.

It is easy to see that income growth is not Normally distributed, while the fit to the DLN

distribution is excellent, as the dCF column of Table 2 confirms. A horse race between the

DLN, Stable, and Laplace again decisively favors the DLN.

3.4 Returns-to-scale

What are the returns-to-scale (RTS) implications of the different production functions?

The RTS of income w.r.t capital is simply defined in terms of the elasticity of Y() w.r.t K,

or the marginal product of capital (MPK) relative to the average product of capital (APK).

First, applying this to the Z-model production function Yz() yields

RTSz =
∂Y (Kt, Zt)

∂Kt

/
Y (Kt, Zt)

Kt

= θz (24)

or the well-known result that all firms, regardless of their state, always have RTSz = θz.
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Applying the same definition to Ysx(), in contrast, yields

RTSsx =
θs · St − θx · Xt

St − Xt

(25)

Importantly, the model no longer implies constant RTS for all firms. Firms may have different

RTSsx depending on their current sales and expenses, even if all firms in the economy share

the same θs and θx parameters. Note that both the numerator and denominator in the

definition of RTSsx are DLN-distributed, as they are weighted differences of log-Normally

distributed values (sales and expenses).

Better intuition can again be gleaned by equivalently writing Equation 25 in terms of

λ, τ using the Yλτ production function. In this case, we have:

RTSλτ = θλ +
θτ

tanh (τt)
≈ θλ +

θτ
τt

(26)

with θλ, θτ given by Equation 17. The model proposes a two-part schedule for RTS: a

constant term and a term inversely related to efficiency τ . Because RTSλτ explodes to ±∞

when |τt| → 0, we again have a base-rate effect, similar to the base-rate effect in income

growth above. The significant mass of firms around τ = 0 then implies a heavy-tailed

distribution of RTS in the data.

While RTS is unobservable, due to the unobservability of MPK, we can nevertheless

observe its other component, the average product of capital APK. Because CF is DLN and

KT is approximately log-Normal, we can predict APK to be DLN as well. This is because

dividing a DLN RV by a log-Normal RV yields another DLN RV. That APK is DLN is

confirmed in Panel (i) of Figure 3 and in the APK column of Table 2.

3.5 Capital and value growth

What are the model implications on the growth in firm capital and on the growth in firm

value (i.e., buy-and-hold returns when also accounting for cash dispensations)? Because the
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model lacks closed-form solutions to the value and policy function, it is difficult to ascertain

those directly. Despite that, some progress can be made in two avenues: by considering the

simplified case in which γ → 0, and via model estimation and simulation. I consider the first

method here before moving on to simulations in the next section.

For the simplified case of γ → 0, MPK is the core determinant of firm size and growth.

The firm simply sets its next period capital Kt+1 to maintain Et [MPK] = r + δ, regardless

of Kt, and all capital growth just follows MPK changes. For the Z-model,

MPKt = θz · exp(zt − (1− θz) · kt)

Kt+1 = exp

(
Cz + ρz · zt

1− θz

)
Cz = log

(
θz

r + δ

)
+ (1− ρz) · µz +

σ2
z

2

dlog(Kt+1) =
ρz

1− θz
· (zt+1 − zt)

(27)

with Cz a constant depending on the parameters of the model. Capital growth in this case

is Normal, based on the assumption regarding the Normal dynamics of z in Section 2.4.

For the SX-model, we have

MPKt = θs · exp (st − (1− θs) · kt)− θx · exp (xt − (1− θx) · kt)

exp(Cs + ρs · st − (1− θs) · kt+1)︸ ︷︷ ︸
gs(st,kt+1)

− exp(Cx + ρx · xt − (1− θx) · kt+1)︸ ︷︷ ︸
gx(xt,kt+1)

= 1
(28)

with Cs and Cx defined analogously to Cz, and the second equation the non-separable equa-

tion defining Kt+1 in terms of st, xt and the model parameters. The equation determines

Kt+1 such that the LHS, itself a DLL function, equals 1. Depending on the values of st, xt

and the model parameters, this equation may not have a solution, implying no capital level is

capable of equating MPK to r+ δ because the firm is losing money even in tiny scales (e.g.,

kt < 0). Nevertheless, we can use the implicit function theorem to write capital growth,
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when it exists, as

dKt/dt

Kt

=
∂Kt
∂st
· dst
dt

+ ∂Kt
∂xt
· dxt
dt

Kt

≈ ρs · gs(st, kt+1) · (st+1 − st)− ρx · gx(xt, kt+1) · (xt+1 − xt)
(1− θs) · gs(st, kt+1)− (1− θx) · gx(xt, kt+1)

(29)

with the approximation due to the forward discrete difference, as usual. Both the first and

second terms of the numerator, as well as the entire denominator, are again DLL functions.

This (weakly) indicates that capital growth is heavy-tailed in the SX-model, especially when

the denominator → 0.

With both capital and income exhibiting heavy-tailed growth, we would expect firm value

in the SX-model to exhibit heavy-tailed growth as well. This is simply because firm value

is the NPV of future income, so rapid growth in income should propagate to rapid growth

in value. Figure 1 has already presented the distributions of capital and value growth in the

data, showing that they appear DLN-distributed. Table 2 reports the formal distributional

tests. For the growth in capital and for five measures of value growth (or equivalently,

returns) the DLN is not rejected, and it wins every horse race against the other distributional

candidates. The five value growth measures are yearly change in firm value adjusted for

dispensations, yearly raw equity returns, monthly excess returns from an FF3 model, daily

excess returns from an FF3 model, and daily excess returns w/ time and scale fixed effects.

4 Estimation and simulation of models

This section describes taking four models to data via indirect inference. The models are

the Z-, S̃-, SX-, and λτ -models, with the first and second two models using the LL and

DLL production functions, respectively. Estimation is relatively straightforward, owing to

the observability of sales, expenses, and capital. I then simulate the estimated models and

consider the distributions of firm outcomes in the models vs. the data. The DLL-based

models replicate the DLN-distributed firm outcomes and fit several important firm moments
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considerably better than the LL-based models.

4.1 Identification and initial parameter values

The Z-, S̃-, SX-, and λτ -models are described by the respective parameter vectors

Θz = {r, δ, θz, ρz, µz, σz, γ, ν}

Θs̃ = {r, δ, θs̃, ρs̃, µs̃, σs̃, τ̃ , γ, ν}

Θsx = {r, δ, θs, ρs, µs, σs, θx, ρx, µx, σx, ρsx, γ, ν}

Θλτ = {r, δ, θλ, ρλ, µλ, σλ, θτ , ρτ , µτ , στ , ρλτ , γ, ν}

(30)

which we aim to estimate using the method of simulated moments. This task is considerably

simplified by noting the following three facts: (i) r, δ are relatively easy to pin down; (ii)

initial guesses for the θ� values (θz, θs̃, θs, θx, θλ, θτ ) can be derived from steady-state argu-

ments regarding returns-to-scale (RTS), conditional on r, δ; and (iii) zt, s̃t, st, xt, λ̂t, τ̂t are

observable, conditional on θ�, allowing us to estimate their dynamic parameters directly.

Pinning down δ is easy because firms generally report their depreciation expenses. Panel

(a) of Figure 5 presents the binned median depreciation rate DP/L.KT and investment rate

IT/L.KT in the data as functions of firm scale L.λ. Throughout nearly the entire scale

distribution, both are tightly packed around 0.04. I hence set δ = 4%.

Pinning down r is slightly more complicated and raises curious questions. A good guess

for r, the firm’s cost of capital, is the median payout ratio DI/L.VL. Panel (b) of Figure

5 presents the binned median ratio in the data. It also presents the binned medians of its

components, the debt payout ratio DD/L.DB and the equity payout ratio DE/L.EQ, all as

functions of firm scale. The median payout ratio is smoothly increasing from 0 to 4%, the

median debt payout ratio is roughly constant at 4%, and the median equity payout ratio is

flat at 0 for the lower half of the scale distribution and then smoothly rises up to 4% for the

upper half. Panel (c) presents the mean and median of the sales-to-capital ratio SL/L.KT,
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by scale, to complete the picture.
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Fig. 5. Stylized facts of firm scale. For each of 49 scale bins, panel (a) presents the binned
median of depreciation rate DP/L.KT and investment rate IT/L.KT. Panel (b) presents the
binned medians of total, debt, and equity dispensation rates DI/L.VL DD/L.DB DE/L.EQ,
respectively. Panel (c) presents the binned mean and median of sales intensity SL/L.KT.
Panel (d) presents the binned log(SD[]) and log(IQR[]) of the growth in the stochastic variable
s, controlling sales, while Panel (e) repeats for log(IQR[]) of the growth in firm scale λ, assets
KT, and value VL. Panel (f) presents the distribution of log average-q log(VL/KT), overlaid
with a fitted Normal.

The stylized facts in Panels (b) and (c) of Figure 5 are somewhat puzzling. First, the

slope of median DI/L.VL is the opposite of that implied by the SMB factor — large firms

have a higher cost of capital than small firms (though the portfolios are not tradable, and

this finding might be spurious). Second, the finding regarding a structural break around

the median scale of 6.5 (or ≈ 660M in 2019 $) is, to my knowledge, new to the literature.

Nevertheless, exploring these scale-dependent stylized facts steers us away from our main

interest and is left for future work, discussed in the concluding remarks. In light of the

evidence in Figure 5, I set r = 2%, which is both approximately the median DI/L.VL in the
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data and the median DI/L.VL for firms around median scale. Setting r = 4% yields similar

qualitative conclusions.

Moving on to initial guesses for θ� — note that for firms close to steady state, or when

γ → 0, we have MPK = r + δ from Equation 7. Hence, we can write:

RTS∗ =
r + δ

APK
=



θz if Yt = Yz()

θs̃ if Yt = Ys̃()

θs·St−θs·Xt
Yt

if Yt = Ysx()

θλ + θτ
tanh(τt)

if Yt = Yλτ ()

(31)

Because APK is observable, We can use this equation to estimate initial guesses for θ�, when

considering firms plausibly in steady-state. Doing so yields initial values: θz = θs̃ = 0.7, θs =

0.28, θx = 0.25, θλ = 0.268, θτ = 0.015.

The marked difference between the initial RTS guesses of the LL-based models and the

DLL-based models is notable. It stems from the fact the median RTS of around 0.7, a much-

used value in the relevant literature, arises from the interaction between the lower RTS of

sales and expenses. The two-part schedule in the λτ -model at the last line of Equation 31

is particularly useful in seeing this. With τ in the data clustered around 0.033, the two-part

schedule and the estimates above imply the typical firm has an RTS = 0.268 + 0.015/0.033

= 0.72, close to the initial value found for θz. The dynamics of τ are thus critical to

understanding the dynamics of RTS in the data.

Finally, the quasi-observability of zt, s̃t, st, xt, λ̂t, τ̂t can be seen by rewriting the definitions
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of Yz(), Ys̃(), Ysx() and Yλτ () in Equations 9, 10, and 18 as

zt = log (Yt)− θz · log (Kt)

s̃t = log ((1− τ̃) · St)− θs̃ · log (Kt)

st = log (St)− θs · log (Kt)

xt = log (Xt)− θx · log (Kt)

λ̂t = λt − θλ · log (Kt)

τ̂t = τt − θτ · log (Kt)

(32)

and noting that income, sales, expenses, scale, efficiency, and capital (Yt,St,Xt, λt, τt, Kt) are

all observable.

Two main challenges arise when using this equation. The first challenge is when taking

the log of income in the imputation of zt, because about 20% of income observations in the

data are negative (i.e., losses). The log of income is undefined, zt cannot be imputed for these

observations, and I ignore them in the Z-model. The S̃-model is included in the estimation

as a second way of overcoming this challenge because it derives its stochastic dynamics from

sales, a strictly positive value, and merely explicitly assumes a fixed τ or τ̃ .

Using the imputed values for the stochastic variables, we can estimate initial guesses for

the parameters controlling their dynamics, namely ρ�, µ�, σ�. The estimation of σ�, the

standard deviation of the innovations to each stochastic variable, brings us to the second

challenge: the decreasing dispersion (i.e. heteroscedasticity) with scale (DDWS) of the

innovations to the stochastic variables. Note that for, e.g., st, the stochastic dynamics in

Section 2.4 yield SD [st+1 − ρs · st] = SD
[
εst+1

]
≡ σs∀s, with SD[] the standard deviation

operator. Put differently, the model assumes innovations to the stochastic variables are

homoscedastic.

Panel (d) of Figure 5 presents the binned log(SD[]) and log(IQR[]) of the innovations to

the stochastic variable controlling sales s, by scale, using the initial guess for θs above to
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extract s. The panel presents systematic DDWS, which also applies to innovations in λ and

to the outcome variables of the firm, the growth in capital and the growth in value, whose

binned log(IQR[]) are presented in Panel (e). Here again, exploring these scale-dependent

stylized facts steers us away from our main interest and is left for future work. In light of the

evidence in Panels (d) and (e) of Figure 5, I set σ� to match the dispersion of innovations

around the median scale in the data, λ = 6.5. Finally, I was unable to find a natural initial

guess for the adjustment cost parameter γ. Prior work (cited above) generally finds fairly

low values for γ, around 0.01-0.1.

The two remaining parameters are set to constants and are not estimated. The parameter

τ̃ of the S̃-model is set to a value of exp(-2*0.033) = 0.936, the (transformed) value of the

efficiency “ridge” in Figure 4. The parameter ν, controlling exit in all models, determines

the average-q V L/KT at which firms exit because firms with Vt < V exit
t = ν ·Kt will find

it more profitable to exit. Throughout the analysis, I present and use the log of average-q,

log(VL/KT) rather than “simple” average-q VL/KT, because we already established that

both value and capital are approximately log-Normal. The ratio of two log-Normal RVs is

itself log-Normal, implying a less distorted way of measuring the highly skewed and always

positive average-q is measuring it in log terms. The distribution of (log) average-q in the

data is presented in Panel (f). The censoring below log(VL/KT)=0 (i.e., VL=KT) is evident,

leading to a deviation from the predicted Normal shape. I set ν to the median average-q

conditional on it being < 1, which is 0.85 in the data.

The recipe for initial guesses is also used to determine which moments we should match

in the estimation procedure. For θ∗, I use the median of RTS∗ from Equation 31, along with

its IQR for the SX-models. Note this is equivalent to matching the location and dispersion of

APK. For the AR(1) dynamics parameters, I use their direct data counterparts (or the heavy-

tail-robust versions thereof) as identifying moments. Finally, to identify the adjustment cost

parameter γ, I match the persistence of capital growth dlog(Kt+1) between periods. When

γ → 0, firms immediately adjust to the optimal capital level every period and hence capital is
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independent between periods, leading to zero capital growth persistence. But as γ increases,

firms adjust slowly towards their optimal capital level and we observe increasing capital

growth persistence. The initial values for γ are set such that this persistence is matched

when holding all other parameters at their initial values.

4.2 Estimation

The estimation procedure is two-step: in the first step, I guess (i.e., grid-search) θ� values,

and in the second step, I conduct a full method of simulated moments (MSM) estimation

conditional on the θ� values. I then choose the parameter values minimizing the Mahalanobis

distance between the simulated and data moments. The two-step procedure is necessary due

to our reliance on the observability of the stochastic variates and their dependence on θ�,

leading to a dependence of their moments on θ� as well. Table 4 summarizes the estimation

and presents for each model: the initial and estimated parameter values; the identifying

moments at the initial and estimated parameter values; the identifying moments in the data;

and the t-value on the difference between the data and simulated moments at the estimated

parameters. Throughout, the model uses the robust estimates of scale and dispersion, median

MED[] and inter-quartile range IQR[], with the IQR divided by 1.35 to make it comparable

to the standard deviation of a Normal distribution.

Panel (a) presents the estimation results for the Z-model. While the initial guess for

θz is 0.7, it leads (in conjunction with the other initial values dependent on it) to a higher

median RTS∗ than in the data. Lowering θz to around 0.6 enables the model to replicate

the identifying data moments very well. Note that the estimated values for the parameters

controlling the AR(1) dynamics of z are identical to their data counterparts and to the

simulated values, implying quasi-observability works well as an identification strategy. The

capital adjustment cost parameter, γ, is estimated to be 0.016 and allows the model to

replicate the persistence of capital growth — its identifying moment.

Recall that the Z-model is difficult to work with due to the existence of negative income.
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Results of estimating the S̃-model, a flavor of the Z-model which overcomes this problem,

are presented in Panel (b). Here, the initial value for θs̃ overshoots MED[RTS∗] only mildly,

and a slight decrease from 0.7 to 0.685 is sufficient to match this identifying moment. The

AR(1) parameters are again identical to their data counterparts and their simulated values.

The persistence of s̃ is much higher than that of z, and the standard deviation is much lower.

The S̃-model matches the identifying moments very well too.

Panel (c) moves on to the SX-model. A main challenge of estimating the SX-model is

that s and x, the stochastic variables controlling sales and expenses, are highly correlated

in the data (with correlation coeff. > 0.95), although their innovations are less correlated

(around 0.5). Estimating models with highly correlated stochastic variates is notoriously

difficult. While the SX-model is able to replicate most of its identifying moments very well,

it is far from capturing the dispersion of RTS∗, one of the two moments identifying θs, θx.

This difficulty is resolved by considering the λτ -model, the flavor of the SX-model which

tracks λ̂ = (s+ x)/2 and τ̂ = (s− x)/2. This transformation naturally resolves the problem

of high correlation between s and x, as λ̂ and τ̂ are nearly uncorrelated. Panel (d) of Table 4

presents the estimation results for the λτ -model, showing that it matches its identifying

moments very well. The estimated value for θλ is slightly higher than its initial value (0.3

vs. 0.27), but with the estimated values the model matches both the location and dispersion

of RTS∗, the identifying moments for θλ, θτ . The AR(1) coefficients are again well-identified

and matched to their data and simulation counterparts, with the exception of µλ, estimated

to a value of 2.9 vs. a value of 4.7 in the data and simulation. The source of this discrep-

ancy appears to be exit-induced selection — firms with low λ̂ exit, such that the ergodic

distribution of λ̂ of remaining firms matches the data. The capital adjustment parameter

γ is somewhat higher at 0.06 but still within the 0.01-0.1 range of previous works, and the

persistence of growth is again well-matched by the model.
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Table 4
Estimation results

Panels (a)-(d) present the results of estimating the Z-model, S̃-model, SX-model, and λτ -
model, respectively. Init is the initial parameter guess. Estim is the estimated value for the
parameter. Moment is the corresponding identifying moment used in estimation. Dmom is
the value of the moment in the data, Imom is its simulated value at Θ = Init, and Smom
is its simulated value at Θ = Estim. t-val is the t-statistic on (Dmom-Smom). MED, IQR,
RHO, and COR are the median, inter-quartile range (divided by 1.35), persistence, and
correlation operators. The stochastic variables are defined by Equation 32.

Panel (a): Z-model

Value at: Value at:
Name Init Estim Moment Init Estim Data t-val

θz RTS 0.699 0.592 MED[RTS*]a 0.825 0.693 0.699 0.755
ρz z pers. 0.691 0.771 RHO[z]a 0.691 0.772 0.771 -0.133
µz z mean -0.185 0.542 MED[z]a -0.185 0.543 0.542 -0.098
σz dz std. 0.430 0.424 IQR[dz]b 0.430 0.423 0.424 0.282
γ Cap. adj. 0.018 0.016 RHO[dk]b 0.301 0.300 0.295 -0.486

Panel (b): S̃-model

Value at: Value at:
Name Init Estim Moment Init Estim Data t-val

θs̃ RTS 0.699 0.685 MED[RTS*]a 0.713 0.699 0.699 -0.021
ρs̃ s̃ pers. 0.956 0.959 RHO[s̃] 0.957 0.959 0.959 -0.307
µs̃ s̃ mean 2.141 2.232 MED[s̃] 2.141 2.232 2.232 -0.037
σs̃ ds̃ std. 0.127 0.126 IQR[ds̃]b 0.127 0.126 0.126 0.243
γ Cap. adj. 0.006 0.006 RHO[dk]b 0.303 0.298 0.295 -0.356
a For firms with dk ∈ IQR[dk] and CF ≥ 1.
b For firms around median scale λ ∈ IQR[λ].
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Table 4
Estimation results

Panel (c): SX-model

Value at: Value at:
Name Init Estim Moment Init Estim Data t-val

θs S RTS 0.283 0.616 MED[RTS*]a 0.301 0.692 0.698 0.635
θx X RTS 0.252 0.583 IQR[RTS*]a 0.017 0.118 0.359 21.500
ρs s pers. 0.990 0.968 RHO[s] 0.990 0.968 0.968 -0.211
µs s mean 4.832 2.676 MED[s] 5.648 2.687 2.676 -0.804
σs ds std. 0.118 0.123 IQR[ds]b 0.118 0.123 0.123 0.042
ρx x pers. 0.982 0.957 RHO[x] 0.982 0.957 0.957 -0.266
µx x mean 4.938 2.797 MED[x] 4.824 2.791 2.797 0.362
σx dx std. 0.127 0.125 IQR[dx]b 0.127 0.125 0.125 0.018
ρsx ds, dx cor 0.493 0.491 COR[ds, dx] 0.494 0.491 0.491 0.039
γ Cap. adj. 0.012 0.012 RHO[dk]b 0.208 0.289 0.295 0.679

Panel (d): λτ -model

Value at: Value at:
Name Init Estim Moment Init Estim Data t-val

θλ λ RTS 0.268 0.302 MED[RTS*]a 0.560 0.689 0.698 0.636
θτ τ RTS 0.015 0.016 IQR[RTS*]a 0.223 0.356 0.359 0.253

ρλ λ̂ pers. 0.990 0.989 RHO[λ̂] 0.990 0.989 0.989 0.113

µλ λ̂ mean 4.882 2.866 MED[λ̂] 5.627 4.698 4.674 -1.238

σλ dλ̂ std. 0.119 0.118 IQR[dλ̂]b 0.119 0.118 0.118 0.065
ρτ τ̂ pers. 0.563 0.562 RHO[τ̂ ] 0.562 0.553 0.562 0.708
µτ τ̂ mean -0.068 -0.074 MED[τ̂ ]b -0.068 -0.073 -0.074 -1.026
στ dτ̂ std. 0.022 0.022 IQR[dτ̂ ]b 0.022 0.022 0.022 0.194

ρλτ dλ̂, dτ̂ cor -0.126 -0.123 COR[λ̂, τ̂ ] -0.127 -0.128 -0.123 0.349
γ Cap. adj. 0.020 0.060 RHO[dk]b 0.294 0.294 0.295 0.153

39



4.3 Simulation

While the models are able to match their identifying moments, the core questions in

this work revolve around un-targeted moments. With estimated models in hand, we can

now simulate the models and observe their ability to match the distributional forms and

moments not targeted by the MSM procedure — most importantly those pertaining to the

heavy tails of income and growth.

Table 5 presents the values of some un-targeted moments in the data and the four mod-

els. The table also includes the standard errors on the data moments (obtained via block-

bootstrap), which are mostly very low as the moments are well-measured in the data. Both

Z-models yield kurtosis values close to 3 (the kurtosis of the Normal distribution) for all

growth measures (growth in income, capital, value, scale, and efficiency), as predicted in

Sections 3.3 and 3.5. The same is not true for the two SX-models. As predicted, the kurtosis

of income growth, capital growth, and value growth are all significantly higher than 3, and

the λτ -model (the better estimated of the two) matches the kurtosis values in the data fairly

well, even without having any moments regarding the kurtosis targeted in the estimation. The

SX-models, capturing the interaction between sales and expenses, indeed yield heavy-tailed

growth.

A visual comparison of these results is provided in Figure 6. The figure presents, for the

data and the simulations of the S̃- and λτ -models, histograms of (asinh) income cf, income

growth dcf, capital growth dk, and value growth (i.e. returns) dv. The data and λτ sim-

ulation histograms are overlaid with MLE-fitted DLN distributions, while the S̃ simulation

is overlaid with MLE-fitted Normal distributions. The visual fit of the data distributions

to DLN is excellent, as previously ascertained in Table 2. The S̃-model distributions again

appear Normal and exhibit no heavy tails. The visual fits of the λτ -model distribution to

the DLN (and to the data), especially for cf, dcf, and dk, are quite striking. The λτ -model

yields the now-familiar double-peaked income distribution, capturing both profit and loss.

It also captures the peaked, non-Normal distributions of income, capital, and value growth,
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Table 5
Estimation results

This table presents moments of the Data, Z-model, S̃-model, SX-model, and λτ -model,
respectively. The moment values for each model are at the estimated parameter values of
Table 4. The operator and stochastic variable definitions are from the same table. KUR is
the kurtosis operator. s.e. is the std. err. of the data moment.

Moment Data Z S̃ SX λτ s.e.

MED[cf ] 4.441 4.828 3.622 8.749 4.291 0.030
IQR[dcf ] 0.436 0.464 0.222 0.613 0.561 0.004
KUR[dcf ] 8.114 3.003 2.989 7.322 6.240 0.319
MED[k] 6.527 7.237 6.037 8.884 6.658 0.029
IQR[dk] 0.130 0.404 0.270 0.908 0.135 0.002
KUR[dk] 14.426 3.181 2.998 4.542 11.751 1.152
MED[v] 6.850 7.956 6.572 10.910 6.925 0.031
IQR[dv] 0.256 0.213 0.193 0.347 0.153 0.002
KUR[dv] 6.901 3.426 3.003 3.248 7.522 0.705
MED[λ] 6.626 7.546 6.334 7.934 6.800 0.028
IQR[dλ] 0.132 0.464 0.222 0.577 0.125 0.002
KUR[dλ] 20.539 3.003 2.989 4.347 3.856 1.863
MED[τ ] 0.033 0.033 0.033 0.092 0.037 0.001
IQR[dτ ] 0.023 N/A N/A 0.065 0.022 0.001
KUR[dτ ] 72.509 N/A N/A 3.026 2.988 9.900
MED[v − k] 0.187 0.730 0.527 1.813 0.254 0.006
IQR[v − k] 0.449 0.182 0.117 1.931 0.151 0.006
MED[RTS*] 0.698 0.693 0.698 0.692 0.679 0.006
IQR[RTS*] 0.359 0.087 0.028 0.118 0.356 0.010
a For firms with dk ∈ IQR[dk] and CF ≥ 1.
b For firms around median scale λ ∈ IQR[λ].
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though the visual fit to the DLN is less than perfect.

Formal distributional tests for the simulated cf, dcf, dk, and dv in the S̃- and λτ -models,

vs. the Normal, skew-Normal, and DLN are reported in Table 6. For the S̃-model, none

of the variables is rejected as a Normal, which in turn implies they are also not rejected as

skew-Normal or DLN. The relative likelihood tests, designed to choose the most parsimonious

model, prefer the Normal for income cf, and value growth dv, but the skew-Normal for income

growth dcf and capital growth dk. These are all in line with the expected approximate

Normality of the Z-models. For the λτ -model, Normality and skew-Normality are strongly

rejected for all four, while the DLN is not rejected for any of the four. The relative likelihood

test again overwhelmingly prefers the DLN over the Normal and skew-Normal.

Considering the dynamics of firm scale λ and firm efficiency τ , we can observe puzzling

deviations from the assumptions of our model in Table 5. Recall that we assumed all stochas-

tic innovations are Normal in Section 2.4. Specifically, we have ελ, ετ ∼ Normal, implying

dλ and dτ should have Normal tails and kurtosis of 3. This is far from the case in the data,

and the innovations to both are exceedingly heavy-tailed. Our current model cannot explain

this stylized fact. This fact, however, explains some of the deviations we observe between

outcome variables in the data and SX-model — with heavy-tailed innovations, we would

expect heavier-tailed growth, especially in dv, as well as wider (i.e. higher IQR) distribution

of (log) median-q v − k. I return to this puzzle shortly, in the conclusion, along with the

other puzzles identified in the paper. Finally, note that the λτ -model is the only one capable

of even coming close to matching the values of MED[v − k] and IQR[RTS∗].
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Fig. 6. Data and Model distributions. This figure presents the histograms of several firm
variables in the data and the S̃ and λτ models. The variables presented are (asinh) income
cf, income growth dcf, capital growth dk, and value growth (i.e., return) dv. The figures are
overlaid with MLE-fitted distributions as indicated.
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Table 6
Distributional tests

This table presents the results of tests of distributional form for (asinh) income cf, income

growth dcf, capital growth dk, and value growth dv, in the S̃ and λτ -models. K-S is a
Kolmogorov–Smirnov test; C-2 is a binned χ2 test with 50 bins; A-D is an Anderson-Darling
test. Panels (a)-(c) report the test statistics and their p-values rejecting the distribution for
the Normal, skew-Normal, and DLN, respectively. Panel (d) reports the relative likelihoods
for each distribution using the AIC and BIC.

S̃-model λτ -model
cf dcf dk dv cf dcf dk dv

Panel (a): Normal

K-S 0.002 0.006 0.011 0.004 0.043 0.143 0.174 0.034
p-val 0.483 0.081 0.054 0.116 0.016 0.000 0.000 0.022
C-2 1.162 11.12 32.69 25.12 459 >999 >999 262
p-val 1.000 0.114 0.064 0.096 0.016 0.000 0.000 0.023
A-D 0.017 0.934 2.951 2.493 41.55 412 662 35.04
p-val 0.436 0.073 0.051 0.057 0.016 0.000 0.000 0.018

Panel (b): skew-Normal

K-S 0.002 0.001 0.002 0.004 0.027 0.145 0.190 0.033
p-val 0.571 0.687 0.254 0.138 0.027 0.000 0.000 0.023
C-2 1.205 1.002 1.704 11.19 142 >999 >999 222
p-val 1.000 1.000 1.000 0.112 0.032 0.000 0.000 0.025
A-D 0.020 0.022 0.078 1.179 12.54 365 600 31.43
p-val 0.391 0.364 0.166 0.082 0.030 0.000 0.000 0.019

Panel (c): DLN

K-S 0.002 0.002 0.003 0.004 0.002 0.010 0.008 0.009
p-val 0.194 0.219 0.149 0.112 0.287 0.058 0.068 0.064
C-2 3.717 2.768 3.982 5.339 5.585 110 44.29 40.61
p-val 0.803 1.000 0.694 0.287 0.253 0.036 0.056 0.058
A-D 0.121 0.158 0.310 0.333 0.117 2.670 1.887 2.013
p-val 0.280 0.128 0.102 0.100 0.142 0.053 0.059 0.058

Panel (d): Relative likelihood tests

AIC R.L.:
Normal 1.000 0.004 0.000 1.000 0.000 0.000 0.000 0.000
skew-Normal 0.379 1.000 1.000 0.115 0.000 0.000 0.000 0.000
DLN 0.018 0.005 0.002 0.007 1.000 1.000 1.000 1.000

BIC R.L.:
Normal 1.000 0.148 0.000 1.000 0.000 0.000 0.000 0.000
skew-Normal 0.010 1.000 1.000 0.062 0.000 0.000 0.000 0.000
DLN 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000
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5 Conclusion

This work begins with possibly the most fundamental of accounting identities, income =

sales - expenses. It uses this identity to motivate a novel production function for the firm,

the difference-of-log-linears (DLL). Together with the CLT-implied fact that AR(1) processes

have Normal ergodic distributions, the DLL production function predicts a little-known

distribution for firm income and consequently firm growth, the difference-of-log-Normals

(DLN) distribution. These theoretical predictions are confirmed by the data in statistical

tests, horse races, and simulation exercises. Because equity returns are themselves one

measure of firm growth, the DLN arises as the distribution of returns as well. These results

are achieved without using: time-varying volatility, factors external to the firm, mixture-

of-Normals assumptions, or non-standard stochastic processes. Thus, this paper provides

an intuitive and simple answer to the question posed in its title: “Why are firm growth

distributions heavy-tailed?”

The theoretical analysis yields two new magnitudes for characterizing firms — firm scale

and firm efficiency, both defined in terms of firm sales and expenses. Both measures are

observable and easy to calculate and interpret. Firm income scale is tightly correlated with

other measures of firm scale, and firm efficiency changes are shown to be the main driver of

income growth. I show that the source of heavy-tailed growth can be traced to a base-rate

effect in firm efficiency and that for most firms, firm efficiency is indeed remarkably close to

zero, yielding rampant base-rate effects. The DLL production function further enables new

and coherent definitions of income growth and returns to scale, among others.

While the question this paper considers may seem somewhat aloof from practical con-

siderations, the findings have many downstream uses. Models based on the SX-model can:

(i) Replicate the distribution of firm income — the departing point for corporate finance

and production- or consumption-based asset pricing models; (ii) Replicate the distribution

of equity returns — an object of intense interest in financial economics and specifically in

asset pricing; (iii) Provide models with both rare disasters and rare winners — i.e. models
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with heavy-tailed growth; (iv) Allow consideration and modeling of loser firms — as stan-

dard models cannot model firms experiencing losses; (v) Enable straightforward models of

exit and entry — thus enabling investigation of dynamism within the work-horse q-theory

model. For example, consider the unobservable value of the marginal product of capital -

the core driver of firm investment and an object of considerable interest in the theory of the

firm. The model proposes a simple estimate of MPK, because RTS = MPK/APK is quasi-

observable, as Equation 26 shows, and APK is observable. The DLL production function

also informs production-based asset pricing models such as Delikouras and Dittmar (2021).

The idea that investment return equals stock return from Cochrane (1991) is pre-disposed

on the assumption of a linear-homogeneous production function. This work convincingly

establishes this is not the case for firms and that the deviations from the assumption have

significant implications.

Several data puzzles were identified in the paper, including the decreasing dispersion of

growth rates with scale (DDWS) and the fact that the growth of the stochastic variables is

DLN rather than Normal, as the model posits. While I leave a full consideration of these

puzzles for future work, it is worth noting that both can be rationalized by appealing to the

internal structure of the firm. Consider the firm as composed of sub-units, each behaving

according to the SX-models above, and the firm as their simple agglomeration. In this case,

the decreasing dispersion with scale is a direct outcome of portfolio theory, similar to how a

portfolio of more stocks has a lower variance. The same assumption is also sufficient to yield

DLN growth in the aggregate stochastic variables, even if each sub-unit’s stochastic growth

is Normal, due to the intervening impact of heavy-tailed capital growth in each sub-unit.

Finally, because firms comprise the productive side of the economy, and dynamic stochas-

tic general equilibrium (DSGE) models ubiquitously include firms as the source of all in-

dividual income, embedding the DLL production function in DSGE models allows for a

micro-foundation of heavy-tailed income growth in a succinct and tractable manner. Thus,

heavy-tailed growth can be embedded in “upstream” economic models as well.
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