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Abstract

Firm growth and return distributions are heavy-tailed. Accounting for the interplay
of sales and expenses is sufficient to explain this fact without relying on time-varying
volatility or factors external to the firm. Embedding the implied production function
into a standard g-theory model yields novel and specific predictions regarding the
distributions of income, growth, and returns. The predictions are supported by the
data. The model is the first to correctly replicate the distribution of firm income and is
hence useful as a foundational model for future work. It proposes extended definitions
of firm income scale, efficiency, and growth.
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“There are only two ways to make money: increase sales and decrease costs”

— Fred DeLuca, founder of Subway

1 Introduction

We have known that the statistical distribution of firm growth is heavy-tailed since at least
the work of Ashton (1926), who documents this for the growth of British textile businesses
in the period 1884 — 1924. Most firms experience moderate growth rates, with about half
of firms experiencing a yearly capital growth rate in the £10% range. But some firms grow
(or shrink) in large jumps. About 1.5% of firms more than double in size in a single year.
These rare or extreme “disasters” and “winners” are far more numerous and economically
consequential than the 0.00015% of firms a Normally distributed growth rate would predict.
Yet we lack a first-principles explanation for the emergence of heavy-tailed firm growth or a
clear statistical representation of its distribution. This work aims to fill this gap.

Much of the interest in the distribution of firm growth in the economic literature stems
from the fact equity returns are themselves just another measure of firm growth. The heavy
tails of growth and returns were studied by Mandelbrot (1960, 1961) and Fama (1963, 1965)
who proposed the family of Stable distributions (also known as Stable-Paretian or Pareto-
Lévy) as a statistical model of firm growth. This distribution was later rejected by Officer
(1972), who concludes that “It may be that a class of fat-tailed distributions with finite
second moments will be found [...] but as yet this remains to be clearly demonstrated.”
The shape of the return distribution is crucial for the coherence of modern portfolio theory
because the Stable distribution lacks finite second moments (our ubiquitous measure of risk),
for the predictions and accuracy of option pricing models, and for the fit of production-based
asset-pricing models to the data.

I show that a simple, intuitive modification to an otherwise standard g-theory model of
the firm — separately accounting for sales and expenses — is sufficient to yield heavy-tailed

firm growth, without appealing to time-varying volatility or factors external to the firm.



Moreover, the economic model makes a highly specific prediction on the shape of firm
growth distributions, predicting they should distribute as the difference-of-log-Normals. I
show that this prediction is supported by the data and that the obscure difference-of-log-
Normals distribution exhibits a remarkable fit to a plethora of firm outcomes, such as income,
capital growth, income growth, and equity returns, as the model predicts. The fit with equity
returns is outstanding and holds for daily, monthly, yearly, raw, and excess returns in a set
of robustness tests.

Figure 1 displays this fit using data on public US firms during the 50-year period 1970-
2019. Panel (a) present the distribution of capital growth, along with two MLE-fitted distri-
butions: a Normal and a difference-of-log-Normals, with Panel (b) presenting the correspond-
ing g-q plot. Panels (c) and (e) present two equity return distributions: monthly raw and
daily excess returns, respectively, again fitted with difference-of-log-Normals distributions.
The g-q plots again exhibit a nearly perfect fit.

The contribution of the paper is not limited to its asset-pricing implications. I show
that the novel production function implied by separately modeling sales and expenses —
a difference-of-log-linears production function, itself a generalization of the log-linear (or
Cobb-Douglas) production function — has several desirable properties beneficial for dynamic
models of corporate finance. In that, the paper follows in the tradition of, e.g., Epstein and
Zin (1991); Campbell and Cochrane (1999) and Bansal and Yaron (2004).

First, the model resolves the critique of Gorbenko and Strebulaev (2010); Strebulaev
and Whited (2012) regarding the “highly unrealistic” lack of losses in dynamic firm models.
Strebulaev and Whited (2012) note, in the context of transitory shocks leading to losses,
that “mathematical problems [...] have not been solved satisfactorily even for the simplest
cases.” In contrast, the model presented here enables a simple and tractable treatment of
losses that can be used when modeling firm leverage and bankruptcy decisions. Second, the
difference-of-log-linears production function gives rise to extended and internally consistent

definitions for common concepts such as firm scale, efficiency, returns-to-scale, and income
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Fig. 1. Firm growth distributions. Panel (a) presents the growth of capital (total assets),
with MLE-fitted Normal and DLN distributions, for a set of 143K firm-year observations
from 1970-2019. Panel (b) presents the respective q-q plots. Panels (¢) and (e) present the
monthly raw and daily excess equity returns for 2M and 5M observations, respectively, with
MLE-fitted DLN distributions. Panels (d) and (f) present the respective q-q plots.



growth. Third, I show that structural estimation of firm models based on this production
function is significantly simplified relative to existing models of firm dynamics due to the
observability of sales and expenses. For these reasons, I propose the model as a foundational
building block when writing models exploring other aspects of the firm.

My approach is by no means a first attempt at explaining the distribution of firm growth.
Gibrat (1931) introduces the log-Normal as the dominant distribution in measuring firm
size, based on a simple argument, later named “the multiplicative Central Limit Theorem”
(CLT). This prediction was confirmed for firms, cities, and other proportionally-growing
entities. Gibrat, however, used the CLT to reason that firm growth should be Normally
distributed and homoscedastic in scale — two predictions that have later been shown to
fail in the data. Following the failure of the Stable distribution to describe firm growth,
discussed above, the Laplace distribution was proposed (and later rejected as well) as a
purely statistical model without an economic justification by Mantegna and Stanley (1995);
Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass, Salinger, and Stanley (1996); Bottazzi
and Secchi (2003).

Prior theoretical models attempt to explain the mechanics of firm growth. Notable ex-
amples include Simon and Bonini (1958); Lucas (1978); Klette and Kortum (2004) and the
more recent works of Bottazzi and Secchi (2006); Buldyrev, Growiec, Pammolli, Riccaboni,
and Stanley (2007); Luttmer (2011). The early works counter-factually yield firms with
Normal growth, while the latter works aim to replicate Laplace-distributed growth. They
do so by positing an economy with a scarcity of opportunities, in which heavy-tailed growth
stems from factors external to the firm. The model presented here, in contrast, is a simple,
intuitive, and straightforward extension of the workhorse g-theory model, and it predicts a
specific novel distribution confirmed by the data.

The paper proceeds as follows: Section 2 presents a g-theory model of firm dynamics,
including entry and exit, using the traditional log-linear and the extended difference-of-log-

linears production functions. Section 3 analyzes the theoretical implications of the models



and confronts these implications with the data. The section analyzes implications for (i)
income; (ii) scale and efficiency (iii) income growth; (iv) returns-to-scale; and (v) capital
and value growth. Section 4 presents a structural estimation and a simulation of the models.
The g-theory model with the new production function replicates the empirical firm data
qualitatively (i.e., in distributional form) as well as quantitatively (i.e., the moments of said

distributions). I provide concluding remarks in Section 5.

2 Models

Since the early works of Lucas (1967), Tobin (1969), Uzawa (1969), and especially the
seminal work of Hayashi (1982), g-theory has become the canonical workhorse of firm mod-

! The neo-classical g-theory model posits a value-

eling in the corporate finance literature.
maximizing firm facing a dynamic investment-dividend decision subject to adjustment costs.
The value-maximizing firm invests up to the point where the marginal benefit of investment
equals the marginal cost of investment, both then denoted marginal-q. The next subsection
presents a general version of the g-theory model that includes entry and exit but abstracts
from the specific forms of the: (i) investment function; (ii) production function; (iii) stochas-

tic dynamics; and (iv) entry and exit mechanics. The following four subsections discuss each

facet, presenting the relevant functional and stochastic forms.

2.1 The general g-theory model

At the beginning of every period, a representative value-maximizing firm observes its
endogenous capital stock for the period K; > 0 and exogenous (i.e., stochastic) productivity

Z; > 0.2 The firm first chooses whether to remain for another period (denoted a; = 1)

'Recent examples include: Hennessy and Whited (2005), Hennessy and Whited (2007), Liu, Whited, and
Zhang (2009), Livdan, Sapriza, and Zhang (2009), Riddick and Whited (2009), Bolton, Chen, and Wang
(2011), DeAngelo, DeAngelo, and Whited (2011), Lin (2012), Belo, Lin, and Vitorino (2014), Nikolov and
Whited (2014), Li, Whited, and Wu (2016), Belo, Li, Lin, and Zhao (2017), Michaels, Page, and Whited
(2019), Sun and Xiaolan (2019), Falato, Kadyrzhanova, Sim, and Steri (2021).

2Both K and Z may be vectors in the general case.



or exit (oy = 0). Firm owners receive some non-negative payoff V=it (K, Z,) > 0 upon
exit. A remaining firm then chooses an investment level I, = I (K1, K;) for the period, or
equivalently an end-of-period capital level K;,;, with negative investment values implying
the proceeds from capital sale. The firm produces income (sales net of all expenses) Y; =
Y (Ky, Z;), and dispenses Dy = D (K11, Ky, Z;) = Y, — I, to owners. All payoffs accrue at
the beginning of the period for simplicity.

The value of the firm V; = V (K}, Z;) is the expected present value of all dispensations.

This value is recursively defined by the Bellman equation

V, = max {(1 — ) et (K, Zy) + o - (D (K1, Koy Z4) + B - Ey [V (K, Zt—l—l)])} (1)

Kit1,0

with 0 < 8 < 1 the time discount parameter, such that 8 = (1+7)~!, and r > 0 is the cost
of capital for the firm.
The investment decision of a remaining firm can be characterized by equating the benefit

and cost of a marginal unit of investment. This implies choosing K;,; such that

B-E[V] (Kig1, Zi)] = =D (K1, Ky, Zy) = 1) (K1, Ky) (2)

where X’() indicates the derivative of the function X() w.r.t its 5 argument. The R.H.S
of Equation 2 is the marginal cost today of one extra unit of next period capital, and the
L.H.S the discounted expected marginal benefit of the extra unit. The value of both is the
marginal-q of the firm at period ¢.

Denote the investment policy function of a remaining firm prescribed by Equation 2 to

be Ki 1 = Uy = W(K;, Z;).? Tt is useful to define the exit (or bankruptcy) threshold of the

3That the function ¥() exists under mild conditions on the functions Y (), I(), and Vit (K, Z,) is a
standard result. See e.g. Stokey, Lucas, and Prescott (1989).



firm in period t,

Bt =B (Ktv Zt) =D (\I]h Kt> Zt) + ﬂ : ]Et [V (\I[tv Zt+1)] - VeXit (Kta Zt) (3)

as the difference between the optimal values conditional on remaining and exiting. The
firm’s exit policy is to remain when it is above the bankruptcy threshold (B; > 0) and exit
otherwise.

We can now combine Equation 2 with the envelope condition to write the remaining

firm’s full first-order condition (f.o.c) for capital as

B‘Et (1 - OftH) 'V(lmt/ (‘I/t, Zt+1) + Qg (Yll (‘I’t, Zt+1> - IIQ (\I’t+1, ‘I’t)) = 1/1 (‘I’t, Kt) (4)

which in turn characterizes the function W (K, Z;). The equation equates the cost of a
marginal unit of extra capital with the discounted marginal benefits from higher exit value,
higher production, and lower future investment costs.

Additionally, it is useful to define the function ®(Z;) to be the fixed point of the function
W (Ky, Zy) in the first input, such that &, = ®(Z;) = ¥ (®(Z;), Z;). Le., O, is the steady-
state capital level corresponding to Z;. As usual, the functions cannot be specified in closed

form and require numerical evaluation.

2.2 Investment function

The investment function I (K, 1, K;) determines the investment level required to move
from current capital level K; to next-period capital level K;,;. It embeds assumptions on
capital depreciation and capital adjustment costs. Throughout, I will be using the investment
function

Leop (Kiy1, Ky) = (K — Ky) - exp (7 - dlog (K1) + 0 - Ky (5)



with dlog(K41) = log(Ky1) —log(K:) = ki1 — ke , 0 < 6 < 1 the capital depreciation rate,
and v > 0 an adjustment parameter.
Note that when v — 0, I.,, simplifies to the perpetual inventory formula with no adjust-

ment costs

Liiv (K1, Kt) = (K1 — Ky) + 6 - Ky = Ky — (1= 6) - K (6)

and the firm’s f.o.c from Equation 4 simplifies to the well-known equality between the ex-

pected marginal product of capital and the user cost of capital, adjusted for exit
E, [(1 — 1) - VP (K1, Zinr) + i - Y (K, Zt+1)] =r+0 (7)

Furthermore, without adjustment costs, the firm immediately adjusts to the optimal capital
level ®(Z;) every period, such that ®(7;) = ¥(K,, Z;) VK;, and marginal-q = 1. In this
simplified case that is nevertheless useful as a benchmark, the policy function of the firm
can be found without value- or policy-function iterations. This fact will be useful when
considering the implications of the models later.

Upon inspection, I, is closely related to the traditional quadratic adjustment form

common to the literature cited above, often written as

e 2
Tpuaa (K1, Ky) = (K1 — Ky) + - < ;{H - 1) Ky +6- K, (8)
¢

We can see the relation between the two functions by noting the parenthesis in Equation 8
is simply the per-period capital growth in percentage terms, while Equation 5 uses growth
in log-point terms. The similarity and difference between the investment functional forms
can be inspected in panels (a)-(c) of Figure 2. In all panels, the current capital level of the
firm is K; = 100 and the depreciation rate is 0 = 4%. The panels present I;iy, Ijuad, and

I.,, with low, medium and high adjustment costs (y € {0.1,0.5,1.5}), respectively.

4Also see https://kn.owled.ge/InvestFuncs for an interactive version.
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2.3 Production functions

The main goal of this paper is to compare and contrast the canonical neo-classical log-
linear (LL) production function with a difference-of-log-linears (DLL) production function
that captures the interplay of sales and expenses. The canonical production function can be
written as

Y. (K, Z) =7, - K = exp (2 + 0. - ky) (9)

with returns to scale parameter 0 < 6, < 1 and with lower-case variables denoting log values
as usual. The g-model generally abstracts from labor, assuming it is elastically adjustable
within periods. Wages and other expenses are already accounted for, as Y, (K}, Z;) models
income, i.e., sales minus expenses. Models following this production function are denoted
Z-models.

The second production function I consider models income explicitly using its economic
definition — the difference between sales and expenses — possibly the most fundamental of

accounting identities,

Yoo (Ki, S Xy) = Sp - Ki* — Xy~ K" = exp (s, + 0 - ki) — exp (x4 0, - ky) (10)
—_—— ——
Sales=S;  Ezpenses=X;
with 0 < 6,,0, < 1 returns to scale parameters in sales and expenses, respectively. In a
slight abuse of notation, firm sales during period ¢ are denoted S; and firm expenses X;.
The function Y, () is now a function of three variables — the capital stock K; and two
stochastic exogenous variables, S; and X;, controlling the dynamics of sales and expenses.
L.e., in this model, Z; is vector-valued. Models following this production function are denoted
SX-models.
Panels (d)-(f) of Figure 2 present examples of the Y. () functional form.” Panel (d)
presents the (logs of) sales, expenses, income, and net income (income minus user-cost of

capital) of a firm, as functions of the firm’s (log) capital level k, at some given parameter

5Also see https://kn.owled.ge/ProdFuncs for an interactive version.
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values. Panel (d) is hence in log-log scale. In this scale, sales and expenses are both linear
in k, as is made clear by the last part of Equation 10. Their difference (i.e., income) is,
however, negative until firm scale is high enough for sales to overtake expenses. Considering
net income, Panel (d) demonstrates the firm is subject to Goldilocks conditions — it has
positive net income for a limited range of capital levels and has negative net income otherwise.

Because negative incomes play an important role in our analysis, it is useful to change
the Y-axis of Panel (d) from log to Inverse Hyperbolic Sine (asinh) scale, so negative values
are better observed. Panel (e) hence repeats the presentation of Panel (d) but with asinh-
transformed Y-axis. Finally, Panel (f) repeats the presentation of Panel (e), but for a higher
value of z. l.e., it considers what will happen to the income of a firm if it faces a positive
(un)productivity shock to the stochastic variable z. Geometrically, increasing the value of
x simply shifts the expenses line (dotted red line) upwards in panel (e), as it controls the
intercept in the (log-log) equation defining expenses. The outcome is to decrease income
(and net income) at every capital level. In fact, the firm’s net income is now negative at all

capital levels.

2.4 Stochastic dynamics

We now define the stochastic dynamics of the productivity state variables Z and S, X,
respectively. The Z process is assumed to follow the canonical AR(1) in logs. L.e. z = log(Z)

follows

Zt41 = (1_p2) 'Uz+pz’zt+€zfz+1 (11>

with persistence 0 < p, < 1 and mean p,. The i.i.d innovations follow

e ~ N(0,0?) (12)

with o, > 0 the standard deviation of €*.

Before proceeding, it is worth contemplating the economic meaning of the exogenous

12
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Fig. 2. Functional forms. This figure presents facts about the functional forms used for
investment and production. Panels (a)-(c) graph the total investment (incl. adjustments)
required to move from K; = 100 to an arbitrary K;,;, with 6 = 4%. The solid green line
is I1vi(), the dashed red is I,,.4(), and the dotted blue is I.,,(). Panels (a)-(c) present low
(v = 0.1), medium (y = 0.5), and high (v = 1.5) adjustment costs, respectively. Panels
(d)-(f) graph the sales (dotted blue), expenses (dotted red), income (solid green), and net
income (income minus user-cost of capital, dashed orange) of a firm as functions of its (log)
capital stock k when using the Y, () production function. The X-axis in panels (d)-(f) is
logarithmic, as is the Y-axis in panel (d). The Y-axis in panels (e)+(f) is in asinh scale.
Panels (d)4(e) use the parameters s = 4.83, x = 4.94, while panel (f) modifies z = 5.1.
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productivity process Z. What determines the factor-productivity of the firm? It is a function
of the “skill, dexterity, and judgment with which labor is applied,” as in Smith (1776), or
of the firm’s production technology, cost structure, managerial talent, market power, and
a host of other components, including luck. In that sense, Z is partly endogenous. Of
course, all firms would prefer to produce as much income as possible from a given amount of
capital K. Put differently, all firms would like to have as high a Z as possible. Firms hence
optimize the components of Z under their control, and as a result, achieve (log) productivity
1z on average. But firms differ in their ability to achieve a high Z, and the differences are
persistent. Z; hence represents the current productivity of the representative firm, given its
optimizing behavior on the components of Z. In this way, Z is the usual measure of our
ignorance regarding the firm, as in Abramovitz (1956).

The S, X process is similarly assumed to follow a joint-AR(1) in logs. Le., s = log(95)
and = = log(X) follow

5t+1:(1_ps)';us+ps'5t+€f+1 (13>

Tey1 = (1 - px) ‘ot Pr Tyt Ef—&-l
with persistence 0 < ps, p, < 1 and mean pg, pi,. The i.i.d innovations follow the bi-variate
Normal

S
€111 0 07 Osy

~N , (14)

T
€11 0 O O

with 04, = psz - 05 - 0, for 05,0, > 0 and —1 < pg, < 1.

Let us again contemplate the economic meaning of S, X. Clearly, all firms would prefer
S — oo and X — 0. On average, however, the representative firm achieves sales (log)
productivity pus and expenses (log un)productivity pu,, after taking all profitable moves to
jointly optimize both S and X. Note that €°, €” are likely correlated. Consider e.g. a firm

encountering a positive demand shock, and finding it profitable to increase sales by working
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a third shift in its factory to supply the newfound demand. The firm can increase S (the
sales productivity of a unit of capital — here, the factory), but to do so, it will also need to
increase X due to extra payments to labor for working a third shift and various other extra

expenses. Hence, it is likely p,, > 0.

2.5 Entry and exit

To close the Z- and SX-models, we still need to define the mechanics of entry and exit.

For exit, I use the simple assumption
Vexit (Kt; Zt) _ Vexit (Kt7 St; Xt) =y Kt (15)

with a capital fire-sale rate 0 < v < 1. This implies firms can fire-sell their capital stock for
a share v of its value and exit. To maintain a constant measure of firms when simulating
the model, a new firm is “born” every time a firm exits. The new firm’s state is drawn from

the ergodic distribution of firm states in the simulation.

3 Analysis of models

The SX-model of the firm, using the DLL production function, makes specific predictions
on various firm outcomes. In this section, I review these predictions and test them in the
data. I also compare these predictions with those of the Z-model using the LL production
function, when appropriate.

The data analyzed cover all public US firms in the 50-year period 1970-2019, and in-
clude 165,000 firm-year observations. Data are predominantly derived from the yearly
CRSP/Compustat data set. For some tests related to equity returns I use higher-frequency
CRSP data. All dollar amounts are normalized by yearly nominal GDP, in 2019 terms.

Table 1 defines all data panels analyzed in terms of Compustat items. Each data panel

is identified throughout with a two-letter mnemonic. I mainly rely on the sources and uses
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identity

sales — expenses = income = total net dividends+ total net investment (16)
SL XS CF DI T

to define expenses as dissipated sales (i.e., sales - income, SL-CF). This guarantees all ex-
penses, including cost of goods, selling, general, administrative, taxes, and various other
“special” and “one-time” expenses are fully accounted for. I verify all results with a tradi-
tional top-down definition as well.

Table 1

Data definitions

This table defines all data items used. The first column is the name of each data item and the
second is the mnemonic used throughout. The third column is the mapping to Compustat
items or previously defined mnemonics, and the fourth is a short description. The core
accounting identity used is the sources and uses equation: income = sales - expenses = total
dividends + total investment, with dividends broadly defined below. The last two data items
are alternative definitions used for comparability with previous work. The “L.” is the lag
operator.

Name XX  Definition Description

Equity value EQ mve market value, year end
Debt value DB It book total liabilities
Total value VL EQ + DB equity + debt

Equity dividends DE dvt + (prstke - sstk) dividends + net repurchase
Debt dividends DD xint + (L.DB-DB) interest paid + decrease in debt

Total dividends DI DE + DD to equity and debt

Total capital KT at total assets (tangible)
Depreciation DP dp of tangible capital

Total investment IT KT - L.KT 4+ DP growth in net assets
Income CF DI+ IT bottom-up free cash flows
Sales SL sl total sales

Expenses XS SL-CF dissipated sales

Expenses (alt.) XA cogs + xsga + txt top-down definition
Income (alt.) CA SL-XA top-down definition

The following sub-sections review model predictions and data outcomes for (i) income;
(ii) scale and efficiency; (iii) income growth; (iv) returns-to-scale; and (v) capital and value

growth.
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3.1 Income

What is the statistical distribution of income CF? Firm income, often called cashflows,
is of utmost importance in both major branches of financial research: corporate finance and
asset pricing. Cashflows are the departing point for corporate finance and production-based
asset pricing models. It is hence quite surprising that the statistical distribution of income
has seen such scant interest in the finance literature.

In typical corporate finance models, income is modeled using a LL production function in
which z, follows an AR(1) process with Normal innovations (i.e., they are Z-models). Recall
that the ergodic distribution of any AR(1) process is Normal, under mild assumptions. This
implies a log-Normal distribution of productivity Z;, income Y, and capital K; in the Z-
model. This modeling choice, however, counter-factually yields firms with strictly positive
income. The lack of negative income in such models ignores a critical feature of the profit-
and-loss mechanism of firm dynamics — namely, losses.

Conversely, here we model income as sales minus expenses using the DLL production
function Y,,. The ergodic distributions of s; and x;, the stochastic processes governing
sales and expenses, are similarly Normal, before considering the impact of exit. This implies
that sales and expenses should have (approximately) log-Normal distributions, and in turn,
implies that income should distribute as the difference between two correlated log-Normal
RVs.

The difference-of-log-Normals (DLN) distribution arises due to a simple set of statistical
facts: (i) both the sum and difference of two Normal RVs are generally Normal under mild
assumption; (i) the sum of two log-Normal RVs is best approximated by a log-Normal RV;
and (iii) the difference of two log-Normal RVs is decidedly not log-Normal. For one, the
log-Normal is strictly positive, while the difference-of-log-Normals is supported on the entire
real line R. Further, the DLN exhibits log-Normal (i.e., heavy) tails in both the positive
and negative directions, yielding a distributional shape quite different from the Normal

“Gaussian bell curve.” Parham (2023) describes the emergence of the DLN distribution in
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general economic data and fully characterizes it, deriving its PDF, CDF, central moments,
and estimators for the distribution parameters given data, as well as verifying them in
extensive Monte-Carlo simulations.

Figure 3 presents the relevant data distributions. Panels (a)-(c) present the distribu-
tions of (log) capital KP, sales SL, and expenses XS in the data, fitted with skew-Normal
distributions. The fit is excellent, and three different goodness-of-fit tests do not reject the
skew-Normal for these firm outcomes. This result is in accordance with the Normal ergodic
distribution of AR(1) processes. The most puzzling thing about Panels (a)-(c) is how un-
puzzling they are, given the extensive literature on the distribution of firm size, here shown
to simply be skew-Normal (in logs).

Panel (d) of Figure 3 then presents a truncated view of the income distribution, in the
limited range between —50M and +100M. Income clearly presents exponential tails in both
the positive and negative directions, explaining the need for truncation. The common way of
dealing with exponential tails, applying a log transform, cannot be used due to the negative
values involved. To deal with the double-exponential nature of the tails, Panel (e) then
presents the Inverse Hyperbolic Sine (asinh) of income, untruncated. The asinh transform
can simply be thought of as a log transform, but in both the positive and negative directions,
and allows us to view the entire distribution. Panels (d) and (e) are also overlaid with MLE-
fitted DLN distributions, exhibiting excellent fit, as do the g-q figure in Panel (f) and the
formal goodness-of-fit tests in the CF and CA columns of Table 2. Income is not rejected
as DLN using the goodness-of-fit tests. The Stable and Laplace distributions — the other
distributions previously considered in the context of firm growth — are rejected by the data.
The DLN also handily beats both in log-likelihood-based horse races for income, using the
AIC and the BIC.

Finally, panel (g) of Figure 3 presents a closer look at the distribution of income, by
considering the dependence of (asinh) income on firm (log) capital KT. I first split the data

into 49 equal bins, based on firm capital, ignoring the top and bottom 1% of observations,
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Fig. 3. Firm size and income distributions. This figure presents firm size and income
distributions. Panels (a)-(c) present (log) capital, sales, and expenses, overlaid with skew-
Normal distributions. Panel (d) presents the (truncated) distribution of CF in linear scale
while Panel (e) presents the untruncated distribution in asinh scale, both overlaid with
MLE-fitted DLN distributions. Panel (f) presents the q-q plot corresponding to Panel (e).
Panel (g) presents the dependence of income on capital, by presenting the (10,25,50,75,90)"
percentiles of asinh(CF), conditional on the sign of CF, for 49 KT scale bins. Panel (h)
presents income growth, given by Equation 22, and Panel (i) presents income intensity
(average product of capital), both overlaid with MLE-fitted DLN distributions.
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Table 2
Distributional tests

This table presents the results of tests of distributional form for income (CF), alt. income
(CA), income growth (dCF), APK (CF/L.KT), capital growth (dKT), yearly total value
growth adjusted for cash dispensations (dVT), yearly raw equity returns (dEQy ), monthly
excess equity returns (dEQS%), daily excess equity returns (dEQS$), and daily excess equity

returns w/ time and scale f.e. (AEQ}Y

). K-S is a Kolmogorov—Smirnov test; C-2 is a binned

x* test with 50 bins; A-D is an Anderson-Darling test. Panels (a)-(c) report the test statistics
and their p-values rejecting the distribution for the Stable, Laplace, and DLN, respec-
tively. Panel (d) reports the relative likelihoods for each distribution using the AIC and BIC.

CF CA dCF APK dKT dVT dEQy dEQ$ dEQ® dEQYY
Panel (a): Stable
K-S 0.034 0.038 0.014 0.028 0.011 0.015 0.017 0.015 0.014 0.015
p-val 0.022 0.019 0.046 0.027 0.055 0.044 0.040 0.045 0.046 0.043
C-2 647 >999 120 379 91 179 236 195 201 204
p-val 0.012  0.000 0.035 0.018 0.040 0.028 0.024 0.027 0.027 0.027
A-D 19.48 50.97 5.86 19.99 3.79 6.50 8.54 6.67 6.16 6.70
p-val 0.025 0.014 0.041 0.025 0.047 0.039 0.035 0.039 0.040 0.039
Panel (b): Laplace
K-S 0.364 0.386  0.073 0.288 0.027 0.017 0.027 0.026 0.051 0.027
p-val 0.000 0.000 0.006 0.000 0.027 0.041 0.028 0.028 0.012 0.027
C-2 >999  >999 >999  >999 290 118 134 244 761 182
p-val 0.000 0.000  0.002 0.000 0.022 0.035 0.033 0.024 0.010 0.028
A-D >999 >999 105.75 >999 18.72  7.75 9.21 19.38 62.69 17.40
p-val 0.000 0.000  0.007 0.000 0.025 0.037 0.034 0.025 0.012 0.026
Panel (c): DLN
K-S 0.003 0.003  0.007 0.006 0.006 0.004 0.004 0.003 0.013 0.007
p-val 0.138 0.149 0.074 0.104 0.087 0.108 0.113 0.148 0.050 0.080
C-2 8 12 59 15 17 14 10 ) 60 21
p-val 0.142 0.111 0.049 0.096 0.089 0.099 0.123 0.353 0.048 0.078
A-D 0.21 0.18 1.11 0.39 0.50 0.45 0.38 0.10 1.74 0.47
p-val 0.117 0.123  0.070 0.095 0.089 0.091  0.096 0.148 0.061 0.090
Panel (d): Relative likelihood tests
AIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
BIC R.L.:
Stable 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Laplace 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DLN 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000
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such that each bin contains 2% of the observations. For each bin, Panel (g) plots the
(10, 25,50, 75,90)™ percentiles of (asinh) income, separately for positive and negative values.
Larger firms earn and lose more money than smaller firms, so the “middle” of the panel
hollows as firm scale rises. This closer look at income is an excellent segue to the next set

of model implications regarding firm scale and efficiency.

3.2 Scale and efficiency

An important feature of the DLL production function is that it can be factored into
the multiplication of an exponential function and a Hyperbolic Sine (sinh) function — the

hyperbolic equivalent of moving from Cartesian to Polar coordinates. We can hence write

st (Kt, St, Xt) =2- exp ()\t> - sinh (Tt)

St + Ty 95+0
= +

5 5 Z k= Xt +0y -k = log(\/Sales - Expenses) (17)

St — Tt 03—9

2 2

® . ky =7, + 0, - k, = log(1/Sales/Expenses)

Tt =

which defines the scale A € R and the efficiency 7 € R of a firm’s income. Note that
A is the mid-point between log sales and log expenses, and 7 is the (equal) distance from
A to log sales and log expenses. The inverse mapping is hence sales = exp (A + 7) and
expenses = exp (A — 7). Clearly, the sign of firm income depends on the sign of 7, and the
magnitude of firm income primarily depends on A, with a small role for 7.

Figure 4 presents a heat map of the income scale and efficiency for all observations in
the data. We can see the vast majority of firm observations (about 86%) have efficiency
in the —0.1 to 0.2 range, with a clear ridge around 7 = 0.033. Scale is approximately

Normally distributed and centered around A = 6.5. The profit/loss line at 7 = 0 appears

6This also rationalizes the ad-hoc use of the asinh transform above.
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to significantly impact firms, as we would expect. We can further see that the location
(though not the dispersion) of efficiency 7 is nearly independent of scale \. When efficiency
is 0, expenses equal sales and income is zero, for all scale values. When scale is \; = 6.5
and efficiency is 7 = 0.033, the firm has sales of exp(6.5 4+ 0.033) = $687M, expenses of
exp(6.5 — 0.033) = $644M, and income of $43M.
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(a) Firm scale and efficiency heat-map

Fig. 4. Firm scale and efficiency. This figure presents a heat map (two-dimensional his-
togram) of the scale and efficiency of US public firms in the 50-year period 1970-2019. The
horizontal axis depicts firm scale A\; = log(1/Sales - Expenses), and the vertical axis presents
firm efficiency 7, = log(+/Sales/Expenses). Zero efficiency (i.e., the profit/loss line) is marked
by the white horizontal line.

This decomposition explains the “hollow middle” pattern in panel (g) of Figure 3. Large
firms make or lose large amounts of money, but seldom small amounts of money, due to
the magnifying power of scale \. The model further implies firm scale should be correlated
and co-integrated with firm (log) capital and other measures of firm scale such as (the logs
of) equity value and sales. Panels (a) and (b) of Table 3 show this is indeed the case, with
high correlations between the various co-integrated scale measures. We can hence see the

commonly used ratio of income to capital (i.e., return on assets ROA, or the average product
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of capital APK) as a proxy for the easily calculable firm efficiency 7.

Firm efficiency is, in fact, the core difference between the Z- and SX-models. Note that
Equation 10, defining the SX production function, collapses into Equation 9, defining the
Z production function, if (i) the returns-to-scale in capital are equal for sales and expenses
(s = 0,). In that case, we can write Z; = S; — X; and return to the formulation in
Equation 9, though without the assumption Z; > 0. This assumption can be maintained
if we further assume (ii) expenses are always lower than sales (S; > X; Vt). The canonical
Z-model production function implicitly makes both assumptions about the dynamics of the
firm.

We can make these assumptions explicit by rewriting the Z-model in Equation 9 to

represent income as a share of sales,
Vi (KiB) = (0= 7)- 8 K = exp(log (1~ 7) + & 45 k) (18)

with expense ratio 0 < 7 < 1. The expense ratio measures how much of firm sales is diffused
as expenses, or the expected X/S ratio, which is simply a transformation of firm efficiency
7.7 Put differently, the SX-model can be viewed as endogenizing 7, and allowing 7 < 0 or

7 > 1, rather than assuming a fixed value for 7 as is done in the Z-models.

3.3 Income growth

The traditional definition of growth (e.g., the difference in consecutive logged values) has
hitherto been poorly defined when applied to income due to the existence of negative income
values that cannot be logged. Consider: What was the income growth of a firm with $100M
of losses last year and $120M of profits this year? Parham (2023) extends the instantaneous

growth definition of Barro and Sala-I-Martin (2003) to RVs possibly taking negative values,

4y, /dt
[Ye| -

yielding The absolute value in the definition of growth is necessary to maintain the

"With 7 = exp (=2 - 7).

23



Table 3
Scale - Descriptive statistics

Panel (a) presents the correlations between the various firm scale measures (A and the logs of
capital, firm value, equity value, sales, and expenses). Panel (b) presents the results of three
cointegration tests between all scale measures, with the first two tests from Pedroni (2004),
and the third from Westerlund (2005). The first two test the null of no cointegration vs. the
alternative that all panels are cointegrated while the third tests the null vs. the alternative
that some panels are cointegrated. Tests are conducted by decade, on the available balanced
sample of firms within each decade. Panel (c) presents regressions of income growth (CF;;4
- CF,)/abs(CF;) on changes in firm scale d\ = A\;y; — A, changes in firm efficiency dr =
Ti11 — Tt, and percent changes in firm efficiency %7 = (1,01 — 1) /7. All regressions include
firm and year fixed-effects, w/ N=165K.

Panel (a): Scale correlations

A KT VL EQ SL XS

A — 929 880 .797 995 .995

KT .929 — 961 .883 .928 .921

VL  .880 .961 — 960 .878 .874

EQ 797 883 960 — .796 .792

SL 995 928 878 .796 — .982

XS 995 921 874 792 982 —

Panel (b): Scale cointegration tests

Phillips-Perron t  p-val = Dicky-Fuller t p-val  Variance ratio  p-val
70’s 51.12 <0.001 -65.76 <0.001 17.42 <0.001
80’s 57.38 <0.001 -07.41 <0.001 21.32 <0.001
90’s 58.97 <0.001 -65.87 <0.001 22.05 <0.001
00’s 62.51 <0.001 -75.13 <0.001 21.67 <0.001
10’s 58.97 <0.001 -60.87 <0.001 22.57 <0.001

Panel (c): determinants of income growth

n 2 6 @

dA 2.264 -5.19

s.e .8550 3.920

dr 16.14 21.68

s.e 1.430 6.557

%t .5036 .5036
s.e .0007 .0007
within-R? .8022  .0000 .0001 .8020
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direction of growth when beginning from negative values (i.e., positive growth will lead to
more profit or at least fewer losses).
The first way to use this equation is to apply it to firm income directly, measuring the

generalized percentage growth in income

Y, /dt
Y|

~ (Y — Y2) /1Y (19)

with the approximation stemming from using the forward discrete difference for the time
derivative. A second way is to assume Y follows the LL production function (i.e., the Z-
model), in which case Y; > 0 and

av,/dt Y- (%40, 4)
Y] Y;

~ (zgo1+ 0, k1) — (240, - k) =log(Yier) —log(Y;) (20)

yielding the familiar difference-in-logs growth measure.
The Z-model implies income growth is approximately Normally distributed. The log-

point growth of income in the Z-model can be written as

dlog(Yyi1) = log(Yeyr) —log(Vy) = (1= p2) - (= — 20) + 0z - (kepr — k) + 654, (21)

with 2, distributing Normally as a property of the AR(1) process, €7, , distributing Normally
by Equation 12, and dlog(K;y1) = ki1 — k¢ difficult to pin down analytically in the general
case. But prior work, as well as steady-state analysis and simulation results discussed below,
indicate dlog( K1) distributes Normally as well in the Z-model. This implies income growth
is Normally distributed in the Z-model. Note the dlog(Y;;1) income growth measure derived
from the Z-model’s LL production function fails when one of the periods has negative income.

The third way to define income growth is to assume Y follows the SX-model’s DLL
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production function, in which case

d}/t/dt - St : dlog (StJrl) — Xt . leg (Xt+1)
a ¢ — Xy

(22)

which expresses income growth as a weighted average of sales growth and expenses growth.
A fourth way, equivalent to the third but yielding considerably more intuition, is to define

income growth using scale and efficiency, in which case

dY,/dt  2-exp(X) - (%t - sinh () + Gt - cosh (7))

dt

\a a 2 -exp (N\;) - |sinh (1)

d)\t th 1 Ti+1 — Tt
dt " dt tanh (Tt):| gn(7:) {( w1 =)+

(23)

= sgn(m) -

with sgn() the sign function. The approximation is now due to two reasons: the forward
discrete difference, as usual, and replacing tanh(7;) with 7, which is valid because firm
efficiency in the data is clustered tightly in the region where tanh(7) ~ 7.

Put differently, the expression for the growth of firm income in the SX-model includes
both an expression for log-point growth in firm scale and an expression for the percent growth
in firm efficiency, added to the log-point growth in scale. Explosive income growth (or the
heavy tails of income growth) occurs due to operational leverage, or a low “base rate” in 7
(i.e., 74 close to zero), leading to high measured growth in income. The correlation in the
data between the SX-based growth measure from Equation 23 and the generalized percentage
growth of income from Equation 19 is above 0.97. Furthermore, nearly all variation in income
growth in the data stems from the dynamics of 7 and the percentage growth in 7 term, rather
than from the dynamics of A, as Panel (c) of Table 3 unequivocally demonstrates.

As an example of the impact of operational leverage, consider a firm with $1B in sales and
$950M in expenses during period ¢. Firm scale is then \; = 6.88 and firm efficiency is 7, =
0.026, both close to the median values observed in the data. First, assume that in period t+1

the firm increases both sales and expenses by 10% to $1.1B and $1.045B, respectively. This
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means A1 = 6.98, 0.1 log-units higher, and 7, = 0.026 is the same. Equation 23 will yield
income growth of 0.1, the same as percentage income growth 55/50—1 = 10%. Alternatively,
assume that in period ¢ + 1 the firm increases sales by 10% to $1.1B, but decreases expenses
by 10% to $855M. This means now A1 = 6.88, the same as \;, but 73,1 = 0.126 is 0.1
log-units higher. Equation 23 yields income growth of (0.126 — 0.026)/0.026 = 3.9 log-units,
equal to the percent growth of income at 245/50—1 = 390%. With income exhibiting heavy-
tailed growth, we would expect firm value to exhibit heavy-tailed growth as well. Firm value
is simply the NPV of future income, so rapid growth in income should propagate to rapid
growth in value.

It is difficult to analytically pin down the heavy-tailed distribution of income growth
resulting from the SX-model. Nevertheless, Panel (h) of Figure 3 presents the distribution
of income growth, as defined by Equation 23, in the data along with an MLE-fitted DLN.
It is easy to see that income growth is not Normally distributed, while the fit to the DLN
distribution is excellent, as the dCF column of Table 2 confirms. A horse race between the

DLN, Stable, and Laplace again decisively favors the DLN.

3.4 Returns-to-scale

What are the returns-to-scale (RTS) implications of the different production functions?
The RTS of income w.r.t capital is simply defined in terms of the elasticity of Y() w.r.t K,
or the marginal product of capital (MPK) relative to the average product of capital (APK).

First, applying this to the Z-model production function Y () yields

dY (K., Zt)/Y (K¢, Zy)
OK, K,

RTS* = =0, (24)

or the well-known result that all firms, regardless of their state, always have RTS* = 4,.

27



Applying the same definition to Y, (), in contrast, yields

es'St_ex'Xt
St_Xt

RTS* = (25)

Importantly, the model no longer implies constant RTS for all firms. Firms may have different
RTS** depending on their current sales and expenses, even if all firms in the economy share
the same 6, and 6, parameters. Note that both the numerator and denominator in the
definition of RTS** are DLN-distributed, as they are weighted differences of log-Normally
distributed values (sales and expenses).

Better intuition can again be gleaned by equivalently writing Equation 25 in terms of

A, 7 using the Y, production function. In this case, we have:

0, 0,
RTSY =0y + ——— ~ 0y + — (26)

tanh (7;) Ty

with 0,0, given by Equation 17. The model proposes a two-part schedule for RTS: a
constant term and a term inversely related to efficiency 7. Because RTS* explodes to o0
when |73| — 0, we again have a base-rate effect, similar to the base-rate effect in income
growth above. The significant mass of firms around 7 = 0 then implies a heavy-tailed
distribution of RTS in the data.

While RTS is unobservable, due to the unobservability of MPK, we can nevertheless
observe its other component, the average product of capital APK. Because CF is DLN and
KT is approximately log-Normal, we can predict APK to be DLN as well. This is because
dividing a DLN RV by a log-Normal RV yields another DLN RV. That APK is DLN is

confirmed in Panel (i) of Figure 3 and in the APK column of Table 2.

3.5 Capital and value growth

What are the model implications on the growth in firm capital and on the growth in firm

value (i.e., buy-and-hold returns when also accounting for cash dispensations)? Because the
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model lacks closed-form solutions to the value and policy function, it is difficult to ascertain
those directly. Despite that, some progress can be made in two avenues: by considering the
simplified case in which v — 0, and via model estimation and simulation. I consider the first
method here before moving on to simulations in the next section.

For the simplified case of v — 0, MPK is the core determinant of firm size and growth.
The firm simply sets its next period capital Ky to maintain E, [MPK] = r + §, regardless

of K;, and all capital growth just follows MPK changes. For the Z-model,

MPKt = 92 . exp(zt — (1 — 92:) . kt)

C,+p,z
Ky = exp (1——p9t)
: 27)
92 0.2 (
z — 1 - < 1—- z) Mz =
C og(r+5>+( ONRES
dlog(Ky11) = fze (241 — 21)

with C, a constant depending on the parameters of the model. Capital growth in this case
is Normal, based on the assumption regarding the Normal dynamics of z in Section 2.4.

For the SX-model, we have

MPEK; =0 -exp(s; — (1 —65) - ki) — 0, -exp (xp — (1 — 0,) - k)

28
?XP(CS +ps -5 — (1—6;) - kt+12_§xp(cx + e — (1 —0,) kt-i-ll =1 (28)

gs(st,kt41) gz (t,kt41)

with C and C), defined analogously to C,, and the second equation the non-separable equa-
tion defining K,;,; in terms of s;, x; and the model parameters. The equation determines
K1 such that the LHS, itself a DLL function, equals 1. Depending on the values of s;, z;
and the model parameters, this equation may not have a solution, implying no capital level is
capable of equating MPK to r + ¢ because the firm is losing money even in tiny scales (e.g.,

k; < 0). Nevertheless, we can use the implicit function theorem to write capital growth,
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when it exists, as

dKy/dt 0k . dn 4 O . dn
K, K,
~ Ps gs(st’ k“‘l) ) (St—i—l - St) — Pz gx(ﬂft, kt+l) . ($t+1 - ﬂft)

(1 —0,) - gs(5¢, kegr) — (1 = 02) - g4, Kiyr)

(29)

with the approximation due to the forward discrete difference, as usual. Both the first and
second terms of the numerator, as well as the entire denominator, are again DLL functions.
This (weakly) indicates that capital growth is heavy-tailed in the SX-model, especially when
the denominator — 0.

With both capital and income exhibiting heavy-tailed growth, we would expect firm value
in the SX-model to exhibit heavy-tailed growth as well. This is simply because firm value
is the NPV of future income, so rapid growth in income should propagate to rapid growth
in value. Figure 1 has already presented the distributions of capital and value growth in the
data, showing that they appear DLN-distributed. Table 2 reports the formal distributional
tests. For the growth in capital and for five measures of value growth (or equivalently,
returns) the DLN is not rejected, and it wins every horse race against the other distributional
candidates. The five value growth measures are yearly change in firm value adjusted for
dispensations, yearly raw equity returns, monthly excess returns from an FF3 model, daily

excess returns from an FF3 model, and daily excess returns w/ time and scale fixed effects.

4 Estimation and simulation of models

This section describes taking four models to data via indirect inference. The models are
the Z-, g—, SX-, and Ar-models, with the first and second two models using the LL and
DLL production functions, respectively. Estimation is relatively straightforward, owing to
the observability of sales, expenses, and capital. I then simulate the estimated models and
consider the distributions of firm outcomes in the models vs. the data. The DLL-based

models replicate the DLN-distributed firm outcomes and fit several important firm moments
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considerably better than the LL-based models.

4.1 Identification and initial parameter values

The Z-, g—, SX-, and A7-models are described by the respective parameter vectors

@Z - {’f‘, 5a 027p27ﬂ270-2a77 V}
@g = {7“, 5a eg, Ps, U3, 0%, ;7’}/7”}

(30)
Ose = {1,0,05, ps, s, Ts, Oz, Py s Oy P V5 V}

Oxr = {1, 0,05, px, tx, Ox, 07, pry firs Oy Prr, Y, V)

which we aim to estimate using the method of simulated moments. This task is considerably
simplified by noting the following three facts: (i) 7,0 are relatively easy to pin down; (ii)
initial guesses for the 05 values (6., 0z, 0s,0.,0,,0,) can be derived from steady-state argu-
ments regarding returns-to-scale (RTS), conditional on r,d; and (iii) zt,gt,st,xt,xt,ﬂ are
observable, conditional on #, allowing us to estimate their dynamic parameters directly.

Pinning down ¢ is easy because firms generally report their depreciation expenses. Panel
(a) of Figure 5 presents the binned median depreciation rate DP/L.KT and investment rate
IT/L.KT in the data as functions of firm scale L.A\. Throughout nearly the entire scale
distribution, both are tightly packed around 0.04. I hence set 6 = 4%.

Pinning down r is slightly more complicated and raises curious questions. A good guess
for r, the firm’s cost of capital, is the median payout ratio DI/L.VL. Panel (b) of Figure
5 presents the binned median ratio in the data. It also presents the binned medians of its
components, the debt payout ratio DD/L.DB and the equity payout ratio DE/L.EQ, all as
functions of firm scale. The median payout ratio is smoothly increasing from 0 to 4%, the
median debt payout ratio is roughly constant at 4%, and the median equity payout ratio is
flat at 0 for the lower half of the scale distribution and then smoothly rises up to 4% for the

upper half. Panel (c) presents the mean and median of the sales-to-capital ratio SL/L.KT,
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by scale, to complete the picture.
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Fig. 5. Stylized facts of firm scale. For each of 49 scale bins, panel (a) presents the binned
median of depreciation rate DP/L.KT and investment rate IT/L.KT. Panel (b) presents the
binned medians of total, debt, and equity dispensation rates DI/L.VL DD/L.DB DE/L.EQ),
respectively. Panel (c¢) presents the binned mean and median of sales intensity SL/L.KT.
Panel (d) presents the binned log(SD[]) and log(IQR[]) of the growth in the stochastic variable
s, controlling sales, while Panel (e) repeats for log(IQR[]) of the growth in firm scale A, assets
KT, and value VL. Panel (f) presents the distribution of log average-q log(VL/KT), overlaid
with a fitted Normal.

The stylized facts in Panels (b) and (c) of Figure 5 are somewhat puzzling. First, the
slope of median DI/L.VL is the opposite of that implied by the SMB factor — large firms
have a higher cost of capital than small firms (though the portfolios are not tradable, and
this finding might be spurious). Second, the finding regarding a structural break around
the median scale of 6.5 (or ~ 660M in 2019 §) is, to my knowledge, new to the literature.
Nevertheless, exploring these scale-dependent stylized facts steers us away from our main
interest and is left for future work, discussed in the concluding remarks. In light of the

evidence in Figure 5, T set » = 2%, which is both approximately the median DI/L.VL in the
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data and the median DI/L.VL for firms around median scale. Setting r = 4% yields similar
qualitative conclusions.
Moving on to initial guesses for 5 — note that for firms close to steady state, or when

v — 0, we have MPK = r + § from Equation 7. Hence, we can write:

QZ if Y, = Yz()

s 05 ifY; =Ys()
APK

RTS* = (31)

%}fxt if Y; = Y. ()

\%+gﬁjﬁK:YH)

Because APK is observable, We can use this equation to estimate initial guesses for 5, when
considering firms plausibly in steady-state. Doing so yields initial values: 6, = 6; = 0.7,6, =
0.28,6, = 0.25,0, = 0.268, 6, = 0.015.

The marked difference between the initial RTS guesses of the LL-based models and the
DLL-based models is notable. It stems from the fact the median RTS of around 0.7, a much-
used value in the relevant literature, arises from the interaction between the lower RTS of
sales and expenses. The two-part schedule in the A7-model at the last line of Equation 31
is particularly useful in seeing this. With 7 in the data clustered around 0.033, the two-part
schedule and the estimates above imply the typical firm has an RTS = 0.268 + 0.015/0.033
= 0.72, close to the initial value found for #,. The dynamics of 7 are thus critical to
understanding the dynamics of RTS in the data.

Finally, the quasi-observability of z;, s;, s¢, x4, Xt, 7; can be seen by rewriting the definitions
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of Y.(), Yz(), Ys:() and Y, () in Equations 9, 10, and 18 as

z =log (V;) — 0, - log (K})
sy =log((1—=7)-S;) — 05 - log (K)
s; = log (S;) — 05 - log (K;)
(32)
z; = log (X;) — 0, - log (K4)

/A\t = At — 0/\ . 10g (Kt)

and noting that income, sales, expenses, scale, efficiency, and capital (Y, Sy, X, A, 7, K3) are
all observable.

Two main challenges arise when using this equation. The first challenge is when taking
the log of income in the imputation of z;, because about 20% of income observations in the
data are negative (i.e., losses). The log of income is undefined, z; cannot be imputed for these
observations, and I ignore them in the Z-model. The S-model is included in the estimation
as a second way of overcoming this challenge because it derives its stochastic dynamics from
sales, a strictly positive value, and merely explicitly assumes a fixed 7 or 7.

Using the imputed values for the stochastic variables, we can estimate initial guesses for
the parameters controlling their dynamics, namely pn, uo, og. The estimation of op, the
standard deviation of the innovations to each stochastic variable, brings us to the second
challenge: the decreasing dispersion (i.e. heteroscedasticity) with scale (DDWS) of the
innovations to the stochastic variables. Note that for, e.g., s;, the stochastic dynamics in
Section 2.4 yield SD [s;41 — ps - s¢] = SD [€),,] = 0,Vs, with SD[] the standard deviation
operator. Put differently, the model assumes innovations to the stochastic variables are
homoscedastic.

Panel (d) of Figure 5 presents the binned log(SD[]) and log(IQR[]) of the innovations to

the stochastic variable controlling sales s, by scale, using the initial guess for 6 above to
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extract s. The panel presents systematic DDWS, which also applies to innovations in A and
to the outcome variables of the firm, the growth in capital and the growth in value, whose
binned log(IQR[]) are presented in Panel (e). Here again, exploring these scale-dependent
stylized facts steers us away from our main interest and is left for future work. In light of the
evidence in Panels (d) and (e) of Figure 5, I set op to match the dispersion of innovations
around the median scale in the data, A = 6.5. Finally, I was unable to find a natural initial
guess for the adjustment cost parameter . Prior work (cited above) generally finds fairly
low values for v, around 0.01-0.1.

The two remaining parameters are set to constants and are not estimated. The parameter
7 of the S-model is set to a value of exp(-2%0.033) = 0.936, the (transformed) value of the
efficiency “ridge” in Figure 4. The parameter v, controlling exit in all models, determines
the average-q VL/KT at which firms exit because firms with V; < V*" = v . K; will find
it more profitable to exit. Throughout the analysis, I present and use the log of average-q,
log(VL/KT) rather than “simple” average-q VL/KT, because we already established that
both value and capital are approximately log-Normal. The ratio of two log-Normal RVs is
itself log-Normal, implying a less distorted way of measuring the highly skewed and always
positive average-q is measuring it in log terms. The distribution of (log) average-q in the
data is presented in Panel (f). The censoring below log(VL/KT)=0 (i.e., VL=KT) is evident,
leading to a deviation from the predicted Normal shape. I set v to the median average-q
conditional on it being < 1, which is 0.85 in the data.

The recipe for initial guesses is also used to determine which moments we should match
in the estimation procedure. For 6,, I use the median of RT'S* from Equation 31, along with
its IQR for the SX-models. Note this is equivalent to matching the location and dispersion of
APK. For the AR(1) dynamics parameters, I use their direct data counterparts (or the heavy-
tail-robust versions thereof) as identifying moments. Finally, to identify the adjustment cost
parameter v, I match the persistence of capital growth dlog(K;y1) between periods. When

v — 0, firms immediately adjust to the optimal capital level every period and hence capital is
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independent between periods, leading to zero capital growth persistence. But as v increases,
firms adjust slowly towards their optimal capital level and we observe increasing capital
growth persistence. The initial values for v are set such that this persistence is matched

when holding all other parameters at their initial values.

4.2 Estimation

The estimation procedure is two-step: in the first step, I guess (i.e., grid-search) 6 values,
and in the second step, I conduct a full method of simulated moments (MSM) estimation
conditional on the 65 values. I then choose the parameter values minimizing the Mahalanobis
distance between the simulated and data moments. The two-step procedure is necessary due
to our reliance on the observability of the stochastic variates and their dependence on g,
leading to a dependence of their moments on 05 as well. Table 4 summarizes the estimation
and presents for each model: the initial and estimated parameter values; the identifying
moments at the initial and estimated parameter values; the identifying moments in the data;
and the t-value on the difference between the data and simulated moments at the estimated
parameters. Throughout, the model uses the robust estimates of scale and dispersion, median
MED]] and inter-quartile range IQR[], with the IQR divided by 1.35 to make it comparable
to the standard deviation of a Normal distribution.

Panel (a) presents the estimation results for the Z-model. While the initial guess for
0, is 0.7, it leads (in conjunction with the other initial values dependent on it) to a higher
median RTS* than in the data. Lowering 6, to around 0.6 enables the model to replicate
the identifying data moments very well. Note that the estimated values for the parameters
controlling the AR(1) dynamics of z are identical to their data counterparts and to the
simulated values, implying quasi-observability works well as an identification strategy. The
capital adjustment cost parameter, v, is estimated to be 0.016 and allows the model to
replicate the persistence of capital growth — its identifying moment.

Recall that the Z-model is difficult to work with due to the existence of negative income.
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Results of estimating the §—model, a flavor of the Z-model which overcomes this problem,
are presented in Panel (b). Here, the initial value for 65 overshoots MED[RTS*] only mildly,
and a slight decrease from 0.7 to 0.685 is sufficient to match this identifying moment. The
AR(1) parameters are again identical to their data counterparts and their simulated values.
The persistence of s is much higher than that of z, and the standard deviation is much lower.
The S-model matches the identifying moments very well too.

Panel (c¢) moves on to the SX-model. A main challenge of estimating the SX-model is
that s and x, the stochastic variables controlling sales and expenses, are highly correlated
in the data (with correlation coeff. > 0.95), although their innovations are less correlated
(around 0.5). Estimating models with highly correlated stochastic variates is notoriously
difficult. While the SX-model is able to replicate most of its identifying moments very well,
it is far from capturing the dispersion of RT'S*, one of the two moments identifying 6, 6,.

This difficulty is resolved by considering the A7-model, the flavor of the S X-model which
tracks A = (s+x)/2 and T = (s — x)/2. This transformation naturally resolves the problem
of high correlation between s and z, as X and 7 are nearly uncorrelated. Panel (d) of Table 4
presents the estimation results for the A7-model, showing that it matches its identifying
moments very well. The estimated value for ) is slightly higher than its initial value (0.3
vs. 0.27), but with the estimated values the model matches both the location and dispersion
of RTS*, the identifying moments for y,6,. The AR(1) coefficients are again well-identified
and matched to their data and simulation counterparts, with the exception of u,, estimated
to a value of 2.9 vs. a value of 4.7 in the data and simulation. The source of this discrep-
ancy appears to be exit-induced selection — firms with low P\ exit, such that the ergodic
distribution of A of remaining firms matches the data. The capital adjustment parameter
v is somewhat higher at 0.06 but still within the 0.01-0.1 range of previous works, and the

persistence of growth is again well-matched by the model.
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Table 4

Estimation results

Pancls (a)-(d) present the results of estimating the Z-model, S-model, SX-model, and Ar-
model, respectively. Init is the initial parameter guess. Estim is the estimated value for the
parameter. Moment is the corresponding identifying moment used in estimation. Dmom is
the value of the moment in the data, Imom is its simulated value at © = Init, and Smom
is its simulated value at © = Estim. t-val is the t-statistic on (Dmom-Smom). MED, IQR,
RHO, and COR are the median, inter-quartile range (divided by 1.35), persistence, and
correlation operators. The stochastic variables are defined by Equation 32.

Panel (a): Z-model

Value at: Value at:
Name Init Estim ‘ Moment Init Estim Data  t-val
0, RTS 0.699 0.592 | MED[RTS*] 0.825 0.693 0.699 0.755
p. 2 pers. 0.691 0.771 | RHO[z]* 0.691 0.772 0.771 -0.133
[, Z mean -0.185  0.542 | MED|z]* -0.185  0.543 0.542 -0.098
o, dzstd. 0.430  0.424 | IQR[dz]® 0.430 0.423 0.424 0.282
v Cap. adj. 0.018 0.016 | RHO|dk]® 0.301 0.300 0.295 -0.486

Panel (b): S-model

Value at: Value at:
Name Init Estim ‘ Moment Init Estim Data  t-val
s RTS 0.699 0.685 | MED[RTS*]* 0.713 0.699 0.699 -0.021
p5 S pers. 0.956  0.959 | RHO[s] 0.957 0.959 0.959 -0.307
[z S mean 2.141 2.232 | MEDI3] 2.141  2.232 2.232 -0.037
oz ds std. 0.127  0.126 | IQR[d5])° 0.127 0.126 0.126 0.243
v Cap. adj. 0.006 0.006 | RHO[dk]® 0.303 0.298 0.295 -0.356

¢ For firms with dk € IQR[dk] and CF > 1.
b For firms around median scale A € IQR[)].
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Table 4
Estimation results

Panel (c): SX-model

Value at: Value at:

Name Init Estim ‘ Moment Init Estim Data t-val
0, S RTS 0.283  0.616 | MED[RTS*]“ 0.301 0.692 0.698 0.635
6, X RTS 0.252  0.583 | IQR[RTS*]* 0.017 0.118 0.359 21.500
ps S pers. 0.990 0.968 | RHO[s] 0.990 0.968 0.968 -0.211
[s S mean 4.832  2.676 | MED(s] 5.648 2.687 2.676 -0.804
o5 ds std. 0.118  0.123 | IQR[ds]’ 0.118 0.123 0.123  0.042
ps T DerS. 0.982 0.957 | RHO[z] 0.082 0.957 0.957 -0.266
fy ®mean  4.938 2.797 | MED[z] 4824 2791 2797  0.362
o, d std. 0.127  0.125 | IQR[dx]’ 0.127 0.125 0.125 0.018
pss  ds,dx cor  0.493  0.491 | COR[ds, dx] 0.494 0.491 0.491  0.039
v Cap. adj. 0.012 0.012 | RHO[dk]" 0.208 0.289 0.295  0.679
Panel (d): At-model

Value at: Value at:

Name Init Estim ‘ Moment Init Estim  Data t-val
6y A RTS 0.268  0.302 | MED[RTS*]" 0.560 0.689 0.698 0.636
0. 7 RTS 0.015 0.016 | IQR[RTS*] 0.223  0.356 0.359  0.253
Py A pers. 0.990  0.989 | RHO[)] 0.990 0.989 0.989 0.113
fx Amean  4.882 2866 | MED[)] 5.627 4.698 4.674 -1.238
ox  dX std. 0.119  0.118 | IQR[dA]® 0.119 0.118 0.118  0.065
pr T pers. 0.563 0.562 | RHO[7] 0.562 0.553 0.562  0.708
i 7Tmean  -0.068 -0.074 | MED[F]® -0.068 -0.073 -0.074 -1.026
o d7F std. 0.022 0.022 | IQR[d7]® 0.022 0.022 0.022 0.194
par dX,d7 cor -0.126 -0.123 | COR[A, 7 0.127 -0.128 -0.123  0.349
v Cap. adj. 0.020 0.060 | RHO[dK]" 0.294 0.294 0.295 0.153
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4.3 Simulation

While the models are able to match their identifying moments, the core questions in
this work revolve around un-targeted moments. With estimated models in hand, we can
now simulate the models and observe their ability to match the distributional forms and
moments not targeted by the MSM procedure — most importantly those pertaining to the
heavy tails of income and growth.

Table 5 presents the values of some un-targeted moments in the data and the four mod-
els. The table also includes the standard errors on the data moments (obtained via block-
bootstrap), which are mostly very low as the moments are well-measured in the data. Both
Z-models yield kurtosis values close to 3 (the kurtosis of the Normal distribution) for all
growth measures (growth in income, capital, value, scale, and efficiency), as predicted in
Sections 3.3 and 3.5. The same is not true for the two SX-models. As predicted, the kurtosis
of income growth, capital growth, and value growth are all significantly higher than 3, and
the A7-model (the better estimated of the two) matches the kurtosis values in the data fairly
well, even without having any moments regarding the kurtosis targeted in the estimation. The
SX-models, capturing the interaction between sales and expenses, indeed yield heavy-tailed
growth.

A visual comparison of these results is provided in Figure 6. The figure presents, for the
data and the simulations of the S- and Ar-models, histograms of (asinh) income cf, income
growth dcf, capital growth dk, and value growth (i.e. returns) dv. The data and A7 sim-
ulation histograms are overlaid with MLE-fitted DLN distributions, while the S simulation
is overlaid with MLE-fitted Normal distributions. The visual fit of the data distributions
to DLN is excellent, as previously ascertained in Table 2. The S-model distributions again
appear Normal and exhibit no heavy tails. The visual fits of the A7-model distribution to
the DLN (and to the data), especially for cf, dcf, and dk, are quite striking. The Ar-model
yields the now-familiar double-peaked income distribution, capturing both profit and loss.

It also captures the peaked, non-Normal distributions of income, capital, and value growth,
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Table 5

Estimation results

This table presents moments of the Data, Z-model, g—model, SX-model, and A7-model,
respectively. The moment values for each model are at the estimated parameter values of
Table 4. The operator and stochastic variable definitions are from the same table. KUR is
the kurtosis operator. s.e. is the std. err. of the data moment.

Moment Data Z S SX AT s.e.
MED[cf] 4.441 4.828 3.622 8749 4.291 0.030
IQR[dcf] 0.436 0.464 0.222 0.613 0.561 0.004
KUR|dcf] 8.114 3.003 2989 7.322 6.240 0.319
MEDIk] 6.527 7.237 6.037 8.884  6.658 0.029
IQR[dE] 0.130 0.404 0.270 0.908 0.135 0.002
KUR|dE] 14.426 3.181 2.998 4.542 11.751 1.152
MED|v] 6.850 7.956 6.572 10.910 6.925 0.031
IQR[dv] 0.256 0.213 0.193 0.347 0.153 0.002
KUR|[dv] 6.901 3.426 3.003 3.248 7.522 0.705
MEDI\] 6.626 7.546 6.334 7.934 6.800 0.028
[IQR[dA] 0.132 0.464 0.222 0.577 0.125 0.002
KURJ[dA] 20.539 3.003 2.989 4.347 3.856 1.863
MEDI|7] 0.033 0.033 0.033 0.092 0.037 0.001
IQR[d7] 0.023 N/A N/A 0.065 0.022 0.001
KUR|dr] 72509 N/A N/A  3.026 2988 9.900
MEDJ[v — k] 0.187 0.730 0.527 1.813 0.254 0.006
IQR[v — K] 0.449 0.182 0.117 1.931 0.151 0.006
MEDI[RTS*] 0.698 0.693 0.698 0.692 0.679 0.006
IQR[RTS*] 0.359 0.087 0.028 0.118 0.356 0.010

¢ For firms with dk € IQR[dk] and CF > 1.
b For firms around median scale A € IQR[)].
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though the visual fit to the DLN is less than perfect.

Formal distributional tests for the simulated cf, dcf, dk, and dv in the S- and AT-models,
vs. the Normal, skew-Normal, and DLN are reported in Table 6. For the §—m0del, none
of the variables is rejected as a Normal, which in turn implies they are also not rejected as
skew-Normal or DLN. The relative likelihood tests, designed to choose the most parsimonious
model, prefer the Normal for income cf, and value growth dv, but the skew-Normal for income
growth dcf and capital growth dk. These are all in line with the expected approximate
Normality of the Z-models. For the A7-model, Normality and skew-Normality are strongly
rejected for all four, while the DLN is not rejected for any of the four. The relative likelihood
test again overwhelmingly prefers the DLN over the Normal and skew-Normal.

Considering the dynamics of firm scale A and firm efficiency 7, we can observe puzzling
deviations from the assumptions of our model in Table 5. Recall that we assumed all stochas-
tic innovations are Normal in Section 2.4. Specifically, we have €y, e, ~ Normal, implying
dX and dr should have Normal tails and kurtosis of 3. This is far from the case in the data,
and the innovations to both are exceedingly heavy-tailed. Our current model cannot explain
this stylized fact. This fact, however, explains some of the deviations we observe between
outcome variables in the data and SX-model — with heavy-tailed innovations, we would
expect heavier-tailed growth, especially in dv, as well as wider (i.e. higher IQR) distribution
of (log) median-q v — k. I return to this puzzle shortly, in the conclusion, along with the
other puzzles identified in the paper. Finally, note that the A7-model is the only one capable

of even coming close to matching the values of MED[v — k| and IQR[RTS*|.
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Fig. 6. Data and Model distributions.

This figure presents the histograms of several firm
variables in the data and the S and A7 models. The variables presented are (asinh) income
cf, income growth dcf, capital growth dk, and value growth (i.e., return) dv. The figures are
overlaid with MLE-fitted distributions as indicated.
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Table 6

Distributional tests

This table presents the results of tests of distributional form for (asinh) income cf, income
growth dcf, capital growth dk, and value growth dv, in the S and Ar-models. K-S is a
Kolmogorov—Smirnov test; C-2 is a binned 2 test with 50 bins; A-D is an Anderson-Darling
test. Panels (a)-(c) report the test statistics and their p-values rejecting the distribution for
the Normal, skew-Normal, and DLN, respectively. Panel (d) reports the relative likelihoods
for each distribution using the AIC and BIC.

S-model A7-model

cf def dk dv ‘ cf def dk dv
Panel (a): Normal
K-S 0.002 0.006 0.011 0.004 | 0.043 0.143 0.174 0.034
p-val 0.483 0.081 0.054 0.116 | 0.016 0.000 0.000 0.022
C-2 1.162 11.12 32.69 25.12 459  >999 >999 262
p-val 1.000 0.114 0.064 0.096 | 0.016 0.000 0.000 0.023
A-D 0.017 0.934 2.951 2.493 | 41.55 412 662 35.04
p-val 0.436 0.073 0.051 0.057 | 0.016 0.000 0.000 0.018
Panel (b): skew-Normal
K-S 0.002 0.001 0.002 0.004 | 0.027 0.145 0.190 0.033
p-val 0.571 0.687 0.254 0.138 | 0.027 0.000 0.000 0.023
C-2 1.205 1.002 1.704 11.19 142  >999 >999 222
p-val 1.000 1.000 1.000 0.112 | 0.032 0.000 0.000 0.025
A-D 0.020 0.022 0.078 1.179 | 12.54 365 600 31.43
p-val 0.391 0.364 0.166 0.082 | 0.030 0.000 0.000 0.019
Panel (¢): DLN
K-S 0.002 0.002 0.003 0.004 | 0.002 0.010 0.008 0.009
p-val 0.194 0.219 0.149 0.112 | 0.287 0.058 0.068 0.064
C-2 3.717  2.768 3.982 5.339 | 5.585 110 44.29 40.61
p-val 0.803 1.000 0.694 0.287 | 0.253 0.036 0.056 0.058
A-D 0.121 0.158 0.310 0.333 | 0.117 2.670 1.887 2.013
p-val 0.280 0.128 0.102 0.100 | 0.142 0.053 0.059 0.058
Panel (d): Relative likelihood tests
AIC R.L.:
Normal 1.000 0.004 0.000 1.000 | 0.000 0.000 0.000 0.000
skew-Normal 0.379 1.000 1.000 0.115 | 0.000 0.000 0.000 0.000
DLN 0.018 0.005 0.002 0.007 | 1.000 1.000 1.000 1.000
BIC R.L.:
Normal 1.000 0.148 0.000 1.000 | 0.000 0.000 0.000 0.000
skew-Normal 0.010 1.000 1.000 0.062 | 0.000 0.000 0.000 0.000
DLN 0.000 0.000 0.000 0.000 | 1.000 1.000 1.000 1.000
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5 Conclusion

This work begins with possibly the most fundamental of accounting identities, income =
sales - expenses. It uses this identity to motivate a novel production function for the firm,
the difference-of-log-linears (DLL). Together with the CLT-implied fact that AR(1) processes
have Normal ergodic distributions, the DLL production function predicts a little-known
distribution for firm income and consequently firm growth, the difference-of-log-Normals
(DLN) distribution. These theoretical predictions are confirmed by the data in statistical
tests, horse races, and simulation exercises. Because equity returns are themselves one
measure of firm growth, the DLN arises as the distribution of returns as well. These results
are achieved without using: time-varying volatility, factors external to the firm, mixture-
of-Normals assumptions, or non-standard stochastic processes. Thus, this paper provides
an intuitive and simple answer to the question posed in its title: “Why are firm growth
distributions heavy-tailed?”

The theoretical analysis yields two new magnitudes for characterizing firms — firm scale
and firm efficiency, both defined in terms of firm sales and expenses. Both measures are
observable and easy to calculate and interpret. Firm income scale is tightly correlated with
other measures of firm scale, and firm efficiency changes are shown to be the main driver of
income growth. I show that the source of heavy-tailed growth can be traced to a base-rate
effect in firm efficiency and that for most firms, firm efficiency is indeed remarkably close to
zero, yielding rampant base-rate effects. The DLL production function further enables new
and coherent definitions of income growth and returns to scale, among others.

While the question this paper considers may seem somewhat aloof from practical con-
siderations, the findings have many downstream uses. Models based on the SX-model can:
(i) Replicate the distribution of firm income — the departing point for corporate finance
and production- or consumption-based asset pricing models; (ii) Replicate the distribution
of equity returns — an object of intense interest in financial economics and specifically in

asset pricing; (iii) Provide models with both rare disasters and rare winners — i.e. models
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with heavy-tailed growth; (iv) Allow consideration and modeling of loser firms — as stan-
dard models cannot model firms experiencing losses; (v) Enable straightforward models of
exit and entry — thus enabling investigation of dynamism within the work-horse g-theory
model. For example, consider the unobservable value of the marginal product of capital -
the core driver of firm investment and an object of considerable interest in the theory of the
firm. The model proposes a simple estimate of MPK, because RTS = MPK/APK is quasi-
observable, as Equation 26 shows, and APK is observable. The DLL production function
also informs production-based asset pricing models such as Delikouras and Dittmar (2021).
The idea that investment return equals stock return from Cochrane (1991) is pre-disposed
on the assumption of a linear-homogeneous production function. This work convincingly
establishes this is not the case for firms and that the deviations from the assumption have
significant implications.

Several data puzzles were identified in the paper, including the decreasing dispersion of
growth rates with scale (DDWS) and the fact that the growth of the stochastic variables is
DLN rather than Normal, as the model posits. While I leave a full consideration of these
puzzles for future work, it is worth noting that both can be rationalized by appealing to the
internal structure of the firm. Consider the firm as composed of sub-units, each behaving
according to the SX-models above, and the firm as their simple agglomeration. In this case,
the decreasing dispersion with scale is a direct outcome of portfolio theory, similar to how a
portfolio of more stocks has a lower variance. The same assumption is also sufficient to yield
DLN growth in the aggregate stochastic variables, even if each sub-unit’s stochastic growth
is Normal, due to the intervening impact of heavy-tailed capital growth in each sub-unit.

Finally, because firms comprise the productive side of the economy, and dynamic stochas-
tic general equilibrium (DSGE) models ubiquitously include firms as the source of all in-
dividual income, embedding the DLL production function in DSGE models allows for a
micro-foundation of heavy-tailed income growth in a succinct and tractable manner. Thus,

heavy-tailed growth can be embedded in “upstream” economic models as well.
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